Thermodynamic Process: Is Work Conserved?

Click For Summary
SUMMARY

The discussion centers on the conservation of work in a thermodynamic cycle involving two isobaric and two isothermal processes. The work done from state B to C is calculated using the formula WBC = p1(V2 - V1), derived from the relationships between pressure and volume during the transitions. The participants confirm that the internal energy change for the cycle is zero, as the initial and final states are identical, and they emphasize the importance of heat transfer during isobaric processes. The calculations presented are deemed correct, reinforcing the understanding of thermodynamic principles.

PREREQUISITES
  • Understanding of isobaric and isothermal processes in thermodynamics
  • Familiarity with the ideal gas law and its applications
  • Knowledge of internal energy changes for ideal gases
  • Basic principles of thermodynamic cycles
NEXT STEPS
  • Study the derivation of the ideal gas law and its implications for thermodynamic processes
  • Learn about the first law of thermodynamics and its application in cyclic processes
  • Explore the concept of heat transfer in isobaric and isothermal processes
  • Investigate the differences in internal energy changes for monatomic and diatomic ideal gases
USEFUL FOR

Students and professionals in physics and engineering, particularly those focusing on thermodynamics, heat transfer, and energy systems.

Ian Baughman
Messages
36
Reaction score
2
What is wrong with this logic, if any? It does not seem like this should be true but maybe I'm mistaken.

Physics.png


Assuming the process consists of two isobaric processes and two isothermal processes the work from B to C in terms of p1, p2, V1, and V2 is given by the following.

1) WBC=p2(VC-VB)
2) Isothermal from A → B so p1V1 = p2VB so VB=(p1V1)/p2
3) Similarly VC=(p1V2)/p2
4) WBC= p2((p1V2)/p2-(p1V1)/p2)
5) Factor out p1/p2 and simplify the you get;
WBC=p1(V2-V1)​
 
  • Like
Likes   Reactions: Charles Link
Science news on Phys.org
Ian Baughman said:
What is wrong with this logic, if any? It does not seem like this should be true but maybe I'm mistaken.

Physics.png


Assuming the process consists of two isobaric processes and two isothermal processes the work from B to C in terms of p1, p2, V1, and V2 is given by the following.

1) WBC=p2(VC-VB)
2) Isothermal from A → B so p1V1 = p2VB so VB=(p1V1)/p2
3) Similarly VC=(p1V2)/p2
4) WBC= p2((p1V2)/p2-(p1V1)/p2)
5) Factor out p1/p2 and simplify the you get;
WBC=p1(V2-V1)​
The isothermal processes have no change in internal energy. for an ideal gas. Much heat must be added to the system in the isobaric expansion for two reasons: 1)work is being done as it expands 2) It is going to a higher temperature state. In the isobaric compression, much heat must be removed from the system for two reasons 1) The system is going to a lower temperature 2) Work is being done on the system. The energy from this work must also be removed by removing heat. I do think your calculations are correct. Thermodynamic problems can sometimes be tricky, but I believe you analyzed it correctly.
 
  • Like
Likes   Reactions: Ian Baughman
It should also be noted that you can readily compute ## \Delta Q=\Delta W ## for each of the two isotherms, since each has ## \Delta U=0 ##. ## \\ ## Meanwhile ## \Delta U ## for each of the isobars will be ## \Delta U=\frac{3}{2}nR \Delta T ## for an ideal monatomic gas, and ## \Delta U=\frac{5}{2}nR \Delta T ## for an ideal diatomic gas (where ## \Delta T=\Delta (PV)/(nR) ##). You can thereby readily compute ## \Delta Q ## for each of the isobars, if you know the type of gas. ## \\ ## I think I have this completely correct, but it's always good to have someone double-check the solution. @Chestermiller Did we get everything correct?
 
Last edited:
Charles Link said:
It should also be noted that you can readily compute ## \Delta Q=\Delta W ## for each of the two isotherms, since each has ## \Delta U=0 ##. ## \\ ## Meanwhile ## \Delta U ## for each of the isobars will be ## \Delta U=\frac{3}{2}nR \Delta T ## for an ideal monatomic gas, and ## \Delta U=\frac{5}{2}nR \Delta T ## for an ideal diatomic gas (where ## \Delta T=\Delta (PV)/(nR) ##). You can thereby readily compute ## \Delta Q ## for each of the isobars, if you know the type of gas. ## \\ ## I think I have this completely correct, but it's always good to have someone double-check the solution. @Chestermiller Did we get everything correct?

Since this is a thermodynamic cycle with the final state being identical to the initial state would the total change in internal energy be equal to zero?
 
Ian Baughman said:
Since this is a thermodynamic cycle with the final state being identical to the initial state would the total change in internal energy be equal to zero?
Yes. And if you will notice, for the two isotherms ## \Delta U=0 ## and for the transitions on the two isobars, ## \Delta U_1=-\Delta U_2 ##. ## \\ ## Editing... perhaps we haven't proved yet that ## \Delta (PV) ## is equal and opposite for these two cases...but that is obvious because on one isotherm, ## PV=nRT_1 ## and on the other isotherm ## PV=nRT_2 ##.Thereby ## \Delta (PV)=nR \Delta T ## and ## \Delta U=\frac{3}{2} nR \Delta T ## or ## \Delta U=\frac{5}{2} nR \Delta T ##.
 
Ian Baughman said:
What is wrong with this logic, if any? It does not seem like this should be true but maybe I'm mistaken.

Physics.png


Assuming the process consists of two isobaric processes and two isothermal processes the work from B to C in terms of p1, p2, V1, and V2 is given by the following.

1) WBC=p2(VC-VB)
2) Isothermal from A → B so p1V1 = p2VB so VB=(p1V1)/p2
3) Similarly VC=(p1V2)/p2
4) WBC= p2((p1V2)/p2-(p1V1)/p2)
5) Factor out p1/p2 and simplify the you get;
WBC=p1(V2-V1)​
Yes. So...

And yes, since this a thermodynamic cycle, the change in internal energy for the working fluid has to be zero.
 
  • Like
Likes   Reactions: Charles Link

Similar threads

  • · Replies 6 ·
Replies
6
Views
571
  • · Replies 61 ·
3
Replies
61
Views
7K
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
8
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 22 ·
Replies
22
Views
6K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 14 ·
Replies
14
Views
9K