Thevenin's Theorem : Reason behind 'nullifying' or 'suppressing' sources?

AI Thread Summary
Thevenin's theorem requires voltage sources to be short-circuited and current sources to be open-circuited to accurately nullify their effects in circuit analysis. An inactive voltage source is equivalent to zero volts, making it behave like a short circuit, while an inactive current source has infinite impedance, functioning as an open circuit. If a voltage source were replaced with an open circuit, a voltage difference could still exist across its terminals, contradicting its inactive status. Similarly, replacing a current source with a short circuit would allow current to flow, which is not permissible for an inactive source. Understanding these principles is crucial for correct application of Thevenin's theorem in circuit analysis.
dwade258
Messages
2
Reaction score
0
WHY aren't voltage sources open circuited and current sources short circuited?

Thevenin's theorem (and even Superposition Theorem) states that we need to 'suppress' or 'nullify' the effect of all sources. We do this by short circuiting voltage sources and open circuiting current sources. WHY exactly can't we do this the other way round by open circuiting voltage sources and short circuiting current sources? What is wrong about doing that?
 
Engineering news on Phys.org
An inactive voltage source is equivalent to zero volts between its terminals, independent of the current through it. This would be a "wire", or a short circuit.

An inactive current source is a current source in which no current can flow independent of the voltage across, which is represented by infinite impedance, and hence an open circuit.
 
Thanks a lot! You are awesome :)
 
If you were to replace the voltage source with an open circuit rather than a short circuit, there may exist a voltage difference across its terminals (dependent on the rest of the network) and hence it would not be considered an "inactive" voltage source. Similar arguments would apply to the current source.
 
Hey guys. I have a question related to electricity and alternating current. Say an alien fictional society developed electricity, and settled on a standard like 73V AC current at 46 Hz. How would appliances be designed, and what impact would the lower frequency and voltage have on transformers, wiring, TVs, computers, LEDs, motors, and heating, assuming the laws of physics and technology are the same as on Earth?
While I was rolling out a shielded cable, a though came to my mind - what happens to the current flow in the cable if there came a short between the wire and the shield in both ends of the cable? For simplicity, lets assume a 1-wire copper wire wrapped in an aluminum shield. The wire and the shield has the same cross section area. There are insulating material between them, and in both ends there is a short between them. My first thought, the total resistance of the cable would be reduced...
I used to be an HVAC technician. One time I had a service call in which there was no power to the thermostat. The thermostat did not have power because the fuse in the air handler was blown. The fuse in the air handler was blown because there was a low voltage short. The rubber coating on one of the thermostat wires was chewed off by a rodent. The exposed metal in the thermostat wire was touching the metal cabinet of the air handler. This was a low voltage short. This low voltage...
Back
Top