Throwing a ball against a wall for projectile motion

AI Thread Summary
A woman throws a ball at a vertical wall 3.4 meters away with an initial velocity of 11 m/s at a 45° angle, starting from a height of 1.7 meters. The discussion focuses on calculating the time the ball is in the air before hitting the wall, where it will hit the ground, and the time it remains in the air after rebounding off the wall. Participants emphasize the importance of correctly applying projectile motion equations and checking arithmetic for accuracy. The calculations involve determining horizontal and vertical components of velocity and solving for time and distance using kinematic equations. Errors in arithmetic or assumptions about the model can lead to incorrect answers, highlighting the need for careful verification.
Psychros
Messages
9
Reaction score
0

Homework Statement


A woman throws a ball at a vertical wall d = 3.4 m away. The ball is h = 1.7 m above ground when it leaves the woman's hand with an initial velocity of 11 m/s at 45°. When the ball hits the wall, the horizontal component of its velocity is reversed; the vertical component remains unchanged. (Ignore any effects due to air resistance.)
(a) Where does the ball hit the ground? meters (from the wall)
(b) How long was the ball in the air before it hit the wall? seconds
(c) Where did the ball hit the wall? meters (above the ground)
(d) How long was the ball in the air after it left the wall? seconds
ScreenShot2014-04-26at45348PM.png

Homework Equations



gravity=-9.8m/s2
Time= 0=v0T-½gT2 T<0
t= (v0y+√(v0y2-2gy))/g
distance/range x=x0+V0xt
x/y velocity- v0x=Vcos(θ); v0y=vsin(θ)

The Attempt at a Solution



I did this for a practice problem with different values, and got the correct answers. With these values it says I've gotten all incorrect answers… If someone could please help and verify what I've done wrong!

*I made the person's hand the origin
We're not dealing with forces, and therefor we don't lose velocity due to impact.

V0y= 11sin(45°)=7.778
Solving for total time t: ½(9.81)t2-7.778t-1.7 (h=1.7)
t=+1.324s

(a) I solved for total distance as regular, and subtracted (d=3.4)
v0x=11cos(45)=7.778
X=0+7.778(1.324)-3.4
x=10.29-3.4= 6.898m

(b) i made the x value 3.4 (distance)
3.4=0+7.778t
t=.539s

(c ) I plugged in the time it took to get to the wall to the vertical formula, and added h 1.7
y=7.778(5.39)-½(9.81)(5.39t2)+1.7
y=4.47m

(d)
total time 1.324 - ans(b) = .784s
 
Last edited:
Physics news on Phys.org
Solving for total time t: ½(9.81)t2-7.778t-1.7 (h=1.7)
Do you mean: $$\frac{1}{2}gT^2-vT\sin\theta-h=0$$ ... it can really help to keep the variables around as long as possible.

Did you realize that ##\sin(45)=\cos(45)=\frac{1}{\sqrt{2}}##?

The idea is to solve:
##x=\frac{1}{\sqrt{2}}vT - d## ... where x is the distance from the wall.

Where T is given by:
$$T=\frac{-v + \sqrt{v^2 +4gh}}{g\sqrt{2}}$$
... it's a + sign in there because we don't want to accept T<0.

So $$x=\frac{-v^2 + v\sqrt{v^2 +4gh}}{2g} -d$$

OK: if this looks like what you did, and you got it wrong, then the only thing I can think of is that you rounded something off somewhere or your calculator threw up a bogus value or something like that.

Check the arithmetic.

Also always possible that the model answer is incorrect.
 
  • Like
Likes 1 person
I actually found that I did my arithmetic wrong solving for time (subtracted instead of addition).

Thanks for the help!
 
Happens to the best of us :)
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top