Calculating Time Dilation for a Spacecraft Traveling to Proxima Centauri

AI Thread Summary
To calculate the velocity required for a spacecraft to reach Proxima Centauri in 3.7 years as experienced by travelers, the relevant equations involve time dilation and the Lorentz factor. The spacecraft must travel at approximately 0.759 times the speed of light (0.759c), resulting in an Earth observer's time of about 5.68 years for the journey. Initial attempts to solve the equations encountered confusion, but clarifications on expressing the Lorentz factor helped resolve the calculations. The discussion emphasizes the importance of correctly applying relativistic equations to find the relationship between the spacecraft's travel time and the observer's time on Earth. Ultimately, the calculations confirm the spacecraft's speed and the corresponding time experienced by Earth observers.
grouper
Messages
52
Reaction score
0

Homework Statement



The nearest star to Earth is Proxima Centauri, 4.3 light-years away. At what constant velocity must a spacecraft travel from Earth if it is to reach the star in 3.7 years, as measured by travelers on the spacecraft ? How long does the trip take according to Earth observers?

Homework Equations



Earth observer: Δt=x/(c*√(1-v2/c2))=Δto/√(1-v2/c2) where Δto=time observed by person on spacecraft

Δto=3.7 yr=1.164e8 s

x=4.3 ly=4.068e16 m

c=3.0e8 m/s

The Attempt at a Solution



I tried using the two versions of the equation above with the known quantities plugged in such that (1.164e8/√(1-v2/c2)=4.068e16/(c*√(v2/c2)), but this is a false statement, so there must be something wrong with my equations or the way I am using them because that method does not yield an answer. Any help is appreciated, thanks.
 
Physics news on Phys.org
grouper said:
Earth observer: Δt=x/(c*√(1-v2/c2))=Δto/√(1-v2/c2) where Δto=time observed by person on spacecraft
I don't quite understand the first part of that equation. Try:
v = Δx/Δt = Δx/(γΔt0)
 
Thanks for the equation corrections! How do I figure out v without knowing Δt though? (or vice versa?)
 
grouper said:
Thanks for the equation corrections! How do I figure out v without knowing Δt though? (or vice versa?)
You know Δt0. Express γ as a function of v. Then you can solve that equation for v, the only unknown.
 
Ok, working that out I got v=0.759c and Δt according to the Earth observers is 5.68 years, both of which are correct. Thanks for the help.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...

Similar threads

Replies
22
Views
1K
Replies
14
Views
2K
Replies
2
Views
2K
Replies
37
Views
4K
Replies
1
Views
1K
Replies
2
Views
2K
Back
Top