Calculating Time Dilation for a Spacecraft Traveling to Proxima Centauri

AI Thread Summary
To calculate the velocity required for a spacecraft to reach Proxima Centauri in 3.7 years as experienced by travelers, the relevant equations involve time dilation and the Lorentz factor. The spacecraft must travel at approximately 0.759 times the speed of light (0.759c), resulting in an Earth observer's time of about 5.68 years for the journey. Initial attempts to solve the equations encountered confusion, but clarifications on expressing the Lorentz factor helped resolve the calculations. The discussion emphasizes the importance of correctly applying relativistic equations to find the relationship between the spacecraft's travel time and the observer's time on Earth. Ultimately, the calculations confirm the spacecraft's speed and the corresponding time experienced by Earth observers.
grouper
Messages
52
Reaction score
0

Homework Statement



The nearest star to Earth is Proxima Centauri, 4.3 light-years away. At what constant velocity must a spacecraft travel from Earth if it is to reach the star in 3.7 years, as measured by travelers on the spacecraft ? How long does the trip take according to Earth observers?

Homework Equations



Earth observer: Δt=x/(c*√(1-v2/c2))=Δto/√(1-v2/c2) where Δto=time observed by person on spacecraft

Δto=3.7 yr=1.164e8 s

x=4.3 ly=4.068e16 m

c=3.0e8 m/s

The Attempt at a Solution



I tried using the two versions of the equation above with the known quantities plugged in such that (1.164e8/√(1-v2/c2)=4.068e16/(c*√(v2/c2)), but this is a false statement, so there must be something wrong with my equations or the way I am using them because that method does not yield an answer. Any help is appreciated, thanks.
 
Physics news on Phys.org
grouper said:
Earth observer: Δt=x/(c*√(1-v2/c2))=Δto/√(1-v2/c2) where Δto=time observed by person on spacecraft
I don't quite understand the first part of that equation. Try:
v = Δx/Δt = Δx/(γΔt0)
 
Thanks for the equation corrections! How do I figure out v without knowing Δt though? (or vice versa?)
 
grouper said:
Thanks for the equation corrections! How do I figure out v without knowing Δt though? (or vice versa?)
You know Δt0. Express γ as a function of v. Then you can solve that equation for v, the only unknown.
 
Ok, working that out I got v=0.759c and Δt according to the Earth observers is 5.68 years, both of which are correct. Thanks for the help.
 
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...

Similar threads

Replies
22
Views
1K
Replies
14
Views
2K
Replies
2
Views
2K
Replies
37
Views
4K
Replies
1
Views
1K
Replies
2
Views
2K
Back
Top