How Does the Time Evolution of Expectation Shape Scientific Understanding?

OGrowli
Messages
12
Reaction score
0
 
Physics news on Phys.org
Are you asking about how quantum mechanical expectation values evolve with time? If so, then it evolves according to the differential equation

\frac{d}{dt}<{\psi}|O|{\psi}> = \frac{i}{\hbar}<{\psi}|[H,O]|{\psi}> + <{\psi}|\frac{{\partial}O}{{\partial}t}|{\psi}>

With O being a Hermitian operator.
 
Last edited:
planck42 said:
Are you asking about how quantum mechanical expectation values evolve with time? If so, then it evolves according to the differential equation

\frac{d}{dt}<{\psi}|O|{\psi}> = \frac{i}{\hbar}<{\psi}|[H,O]|{\psi}> + <{\psi}|\frac{{\partial}O}{{\partial}t}|{\psi}>

With O being a Hermitian operator.

i don't know what happened to my original post, but I am having an issue with the following problem:

Show that:

\frac{d}{dt}<x^2> =\frac{1}{m}(< xp_x> +<p_xx>)

for a three dimensional wave packet.

relevant equations:

Ehrenfest Theorem:(1)
i\hbar\frac{d}{dt}&lt;O&gt;=&lt;[O,H]&gt;+i\hbar&lt;\frac{\partial }{\partial t}O&gt;

where O is an operator
(2)
\frac{d}{dt}\int_{V}d^3r\psi ^*O\psi

I tried using both ways illustrated above and I arrived at the same answer:

\frac{-i\hbar}{2m}\int_{V}d^3r\psi ^*[\bigtriangledown ^2(x^2\psi)-x^2\bigtriangledown ^2\psi]

=\frac{-i\hbar}{2m}\int_{V}d^3r\psi ^*[\frac{\partial }{\partial x}<br /> (x^2\psi&#039;+2x\psi)-x^2\frac{\partial^2 }{\partial x^2}\psi]

=\frac{-i\hbar}{2m}\int_{V}d^3r\psi ^*[<br /> 2\psi+2x\frac{\partial }{\partial x}\psi+2x\frac{\partial }{\partial x}\psi+(x^2-x^2)\frac{\partial^2 }{\partial x^2}\psi]

=\frac{1}{m}\int_{V}d^3r[\psi ^*(-i\hbar)\psi+\psi^*x(-i\hbar\frac{\partial }{\partial x})\psi+\psi^*(-i\hbar\frac{\partial }{\partial x})x\psi]

=\frac{1}{m}(&lt;xp_x&gt;+&lt;p_xx&gt;)-\frac{i\hbar}{m}

Am I doing anything wrong? Where does the extra term come from, and does it mean anything?
 
nvm, I got it:

<br /> =\frac{-i\hbar}{2m}\int_{V}d^3r\psi ^*[\frac{\partial }{\partial x}<br /> (x^2\psi&#039;+2x\psi)-x^2\frac{\partial^2 }{\partial x^2}\psi]<br />

=\frac{-i\hbar}{2m}\int_{V}d^3r\psi ^*[x^2\frac{\partial^2 }{\partial x^2}\psi+2x\frac{\partial }{\partial x}\psi+2\frac{\partial }{\partial x}(x\psi)-x^2\frac{\partial^2 }{\partial x^2}\psi]

=\frac{1}{m}\int_{V}d^3r[\psi^*x(-i\hbar\frac{\partial }{\partial x})\psi+\psi^*(-i\hbar\frac{\partial }{\partial x})x\psi]

=\frac{1}{m}(&lt;xp_x&gt;+&lt;p_xx&gt;)

I went wrong thinking I could just rearrange the derivatives.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top