Time harmonic case of Gauss's Law

Click For Summary

Discussion Overview

The discussion revolves around the time harmonic case of Gauss's Law, particularly focusing on the implications of time harmonic electric fields in relation to charge density and the divergence of electric fields. Participants explore the conditions under which these fields can exist without bound charges, examining the assumptions related to homogeneous materials and the absence of free charge and current.

Discussion Character

  • Exploratory
  • Technical explanation
  • Conceptual clarification
  • Debate/contested

Main Points Raised

  • One participant expresses confusion about why a time harmonic electric field cannot bound a charge source and why its divergence is always zero, suggesting a possible misunderstanding of assumptions in the textbook.
  • Another participant proposes that in a homogeneous material with no free charge or current, the divergence of the electric field must be zero, leading to no polarization charge inside the material.
  • It is noted that if the conductor is homogeneous and responds linearly, there will be no charge build-up, but this changes if the material has boundaries or is non-homogeneous.
  • Participants discuss the implications of assuming a single homogeneous material versus considering spatially dependent properties of conductivity and permittivity, which complicate the algebraic steps assumed in the analysis.
  • One participant questions whether a theoretical time harmonic source of charge would produce a non-zero volume charge density at various points in time, indicating a potential gap in the assumptions made in the discussion.

Areas of Agreement / Disagreement

Participants generally agree on the importance of the assumption of a homogeneous material in the context of the discussion. However, there is no consensus on the implications of time harmonic sources of charge and their effects on electric fields and charge density.

Contextual Notes

Limitations include the dependence on the assumption of a homogeneous material and the potential for spatially varying properties to alter the conclusions drawn about charge density and electric field divergence.

elyons
Messages
10
Reaction score
1
In a chapter building up to the theory of plane waves my book starts by introducing
time harmonic electric fields and defines a special case of Gauss's law.curl(H) = J + dD/dt

curl(H) = sigma * E + epsilon * dE/dt

if E is time harmonic and spacially dependent... E(x,y,z,t) let E' represent the phasor form

curl(H) = sigma * E' + epsilon * j * w * E'

curl(H) = (sigma + epsilon*j*w) E'

of curl(H) = jw(epsilon - j*sigma/w) E'
where epsilon - j*sigma/w = epsilon_c (complex permittivity)given that... divergence(curl(H)) = 0...

divergence( jw * epsilon_c * E') = 0

therefore divergence(E) = 0

so pv (volume charge density) = 0 by Gauss's lawI am very confused why a time harmonic E field can never bound a charge source and why it's divergence is always zero as my book seems to suggest.
I am guessing of have missed a major assumption and or am misinterpreting something? Looking for some guidance. Thanks!
 
Physics news on Phys.org
Let's take the divergence of both sides of this equation, but let's assume ## J=J_{free} =0 ##, and let's look at ## 0=\frac{d \nabla \cdot D}{dt}=\frac{d (\epsilon_o \nabla \cdot E+\nabla \cdot P)}{dt} ##. If we have a single material, and a single frequency, we can write ## P(\omega)=\epsilon_o \, \chi(\omega) E(\omega) ##, with ## E(t)=E(\omega)e^{i \omega t} ## and ## P(t)=P(\omega) e^{i \omega t} ##. Having a single homogeneous material means we get no polarization charges on any surface interface, (because there are no surface interfaces), and with the equation as we have it, it shows that we must have ## \nabla \cdot E=0 ##. We won't get any polarization charge inside the single uniform material. ## \\ ## I think a similar argument could be applied to the ## \nabla \cdot J_{free}=\nabla \cdot (\sigma E ) ## term. If the conductor is homogeneous, and responds linearly with ## J=\sigma E ##, so that ## J(\omega)=\sigma(\omega) \, E(\omega)##, there is no charge build-up anywhere. (If the conductor has a boundary, so that ## \sigma ## is not constant, then you will get charge build-up, and ## \nabla \cdot E \neq 0 ## ). ## \\ ## I don't know that what is found in your textbook is saying anything of any more significance than what I have just shown.
 
Last edited:
Charles Link said:
Let's take the divergence of both sides of this equation, but let's assume ## J=J_{free} =0 ##, and let's look at ## 0=\frac{d \nabla \cdot D}{dt}=\frac{d (\epsilon_o \nabla \cdot E+\nabla \cdot P)}{dt} ##. If we have a single material, and a single frequency, we can write ## P(\omega)=\epsilon_o \, \chi(\omega) E(\omega) ##, with ## E(t)=E(\omega)e^{i \omega t} ## and ## P(t)=P(\omega) e^{i \omega t} ##. Having a single homogeneous material means we get no polarization charges on any surface interface, (because there are no surface interfaces), and with the equation as we have it, it shows that we must have ## \nabla \cdot E=0 ##. We won't get any polarization charge inside the single uniform material. ## \\ ## I think a similar argument could be applied to the ## \nabla \cdot J_{free}=\nabla \cdot (\sigma E ) ## term. If the conductor is homogeneous, and responds linearly with ## J=\sigma E ##, so that ## J(\omega)=\sigma(\omega) \, E(\omega)##, there is no charge build-up anywhere. (If the conductor has a boundary, so that ## \sigma ## is not constant, then you will get charge build-up, and ## \nabla \cdot E \neq 0 ## ). ## \\ ## I don't know that what is found in your textbook is saying anything of any more significance than what I have just shown.

Thank you for the response, I think this helps me narrow down my confusion a bit more. This makes sense for a 'charge and current' free region as you are showing, that an externally produced E field would not result in any long term charge in a homogeneous material.
I think my confusion is that my book doesn't seem to make this assumption (maybe I missed this?) of being in a current free charge free region.
If there was some theoretical time harmonic source of charge wouldn't it produce a time harmonic E field and then wouldn't the volume charge density have nonzero value at various points in time in that region?
 
elyons said:
Thank you for the response, I think this helps me narrow down my confusion a bit more. This makes sense for a 'charge and current' free region as you are showing, that an externally produced E field would not result in any long term charge in a homogeneous material.
I think my confusion is that my book doesn't seem to make this assumption (maybe I missed this?) of being in a current free charge free region.
If there was some theoretical time harmonic source of charge wouldn't it produce a time harmonic E field and then wouldn't the volume charge density have nonzero value at various points in time in that region?
I only assumed ## J_{free} =0 ## ,(and presumably ## \rho_{free}=0 ##), for the very first paragraph. After that, the more general case applies, but again, the assumption of a homogeneous material still applies. ## \\ ## The assumption of a single homogeneous material seems to be the important one in all cases here, rather than a harmonic time dependence. ## \\ ## Note: In the equation ## \nabla \times H=J+\frac{\partial{D}}{\partial{t}} ##, the ## J ## here is ## J_{free} ##. ## \\ ## The ## J_m =\nabla \times M ## and ## J_p=\dot{P} ## are not part of ## J ## here, in this equation. ## \\ ## And also notice if ## \sigma ## and ## \epsilon ## are spatially dependent, i.e. a non-homogeneous material, then ## \nabla \sigma \neq 0 ## and ## \nabla \epsilon \neq 0 ##, so that ## \nabla \cdot ( \sigma E) \neq \sigma \nabla \cdot E ##, and ## \nabla \cdot (\epsilon E) \neq \epsilon \nabla \cdot E ##, so that an algebraic step that was assumed would not be permissible.## \\ ## (Note: ## \nabla \cdot (\sigma E)=(\nabla \sigma) \cdot E+\sigma \nabla \cdot E ## ).
 
Last edited:
Charles Link said:
I only assumed ## J_{free} =0 ## ,(and presumably ## \rho_{free}=0 ##), for the very first paragraph. After that, the more general case applies, but again, the assumption of a homogeneous material still applies. ## \\ ## The assumption of a single homogeneous material seems to be the important one in all cases here, rather than a harmonic time dependence. ## \\ ## Note: In the equation ## \nabla \times H=J+\frac{\partial{D}}{\partial{t}} ##, the ## J ## here is ## J_{free} ##. ## \\ ## The ## J_m =\nabla \times M ## and ## J_p=\dot{P} ## are not part of ## J ## here, in this equation. ## \\ ## And also notice if ## \sigma ## and ## \epsilon ## are spatially dependent, i.e. a non-homogeneous material, then ## \nabla \sigma \neq 0 ## and ## \nabla \epsilon \neq 0 ##, so that ## \nabla \cdot ( \sigma E) \neq \sigma \nabla \cdot E ##, and ## \nabla \cdot (\epsilon E) \neq \epsilon \nabla \cdot E ##, so that an algebraic step that was assumed would not be permissible.## \\ ## (Note: ## \nabla \cdot (\sigma E)=(\nabla \sigma) \cdot E+\sigma \nabla \cdot E ## ).

Thanks! The spatially dependent case clears up my confusion.
 
  • Like
Likes   Reactions: Charles Link

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 29 ·
Replies
29
Views
2K
  • · Replies 7 ·
Replies
7
Views
889
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 115 ·
4
Replies
115
Views
17K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K