Time-independent Schrödinger equation, normalizing

WrongMan
Messages
149
Reaction score
15

Homework Statement


An electron coming from the left encounters/is trapped the following potential:
-a<x<0; V=0
0<x<a; V=V0
infinity elsewhere
the electron has energy V0
a)Write out the wave function
b)normalize th wave function

Homework Equations

The Attempt at a Solution


for -a<x<0
$$Ψ(x)=Acos(kx)+Bsin(kx)$$
$$k^2=\frac{2mV_0}{ħ^2}$$
and for 0<x<a
$$Ψ(x)=Cx+D$$
and 0 elsewhere
i used the sine and cosine because it seemed it would be better for continuity condition in x=0, if you would use exponential form please do explain why.
so this is what my teacher expects for a).
for b)
applying continuity conditions on x=0 i get:
A=D
B=C
and so:$$\int_{-a}^{0}|Ψ(x)|^2=1$$
im a bit confused here, is this the norm or the module? i think its the norm and if so ot might have been worth it to write the wave function in exponential form, so before i transcribe this big integral please clarify this for me.

Furthermore this should look like a particle traped in a box correct? i don't really understand what happens when E=V, i understand the probabiity part, it decays linearly further inside the step, correct?
And what about if E>V0 is it a particle traped in a box, but in the 0-a area the amplitude decreses? And the allowed energy levels for that area start at V0? what about penetration? and when E is smaller what happens?
Thank you!

Edit:would it be easier if i shifted the potential by -a so that it is in the range [0;2a]?
 
Last edited:
Physics news on Phys.org
##B=C## isn't quite correct. You should also apply continuity conditions for ##\psi(x)## at ##x=-a## and ##x=a##.

The normalization requirement is
$$\int_{-\infty}^\infty \lvert \psi(x) \rvert^2\,dx = 1.$$ In this problem, since the wave function vanishes for ##|x|>a##, you have
$$\int_{-a}^a \lvert \psi(x) \rvert^2\,dx = 1.$$
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top