Peter,
Gelilean principle of relativity is defined in such a way, as much as i understand it, that it says that if i want, i may check out with any existing experimental measuring device, an object body of matter, before it was accelerated (not while it is accelerated and certainly not with an accelometer), and even then ('even': no matter what measuring device i use), i will not be able to say, if it was accelerated afterwards (if a force was acting on it, creating a non-zero proper acceleration) - 'afterwards' means testing the object body some while afterwards, when it is yet (if was not accelerated), or again (if was accelerated) - moving at constant speed afterwards, checking it a second time: checking object body of matter again, with any measuring device i want (not while it is accelerated) - and will not be able to detect this information (if it was accelerated or not), using this second measurement, and comparing it to the first one.
Next stage of my question is, imagining a fictitious scenario, where suddenly i am able to detect this kind of e data, using an imaginary experimental measuring device, that is able to detect if the object was accelerated in the past or not, without having any measuring data from the accelerating period itself.
What is important for me to keep clear is, that this is not a plastic deformity of the object external structure, that i am referring to, with this imaginary measuring device, but some sort of imaginary particle bonding or particle radiation, 'yet unknown', that can be detected even when the plastic deformity of an object, as a result of that force acting, is absolutely negligible and undetectable.
What i understand from you answers, peter, is that you rather answer only questions that arise from known experimental facts, and not from imaginary scenarios, that is very fine with me, if this is what you mean by ' as I said before', if so, you have given me a full answer, thanks.
But, for anyone else, who may consider imaginary scenarios, i am asking this question, in order to see, how well i have understood the Galilean principle of relativity, since, as much as i understand this principle, if this imaginary measuring machine would have existed, even a very simple version of it, that can tell me that a body, although not deformed at any detectable external level, had gone through an acceleration period up to one hour ago, than the Galilean principle would be negated.
If the answer is yes, i am right, that in such an imaginary scenario, the Galilean principle of relativity would be negated, than i may say that i think i understood that principle.
But, if, even under such imaginary conditions, Galilean principle of relativity still holds, than i definitely did not understand this principle, or did not understand other physical principles, that still hold under this imaginary scenario or that make such an imaginary scenario impossible, and would like to understand, how, under these imaginary conditions, this/these principles would still hold.