To find the particular integral

  • Thread starter Thread starter manal950
  • Start date Start date
  • Tags Tags
    Integral
manal950
Messages
177
Reaction score
0
Hi

here is question with answer

please can help me from where we got

1 + 9

and

-2+9

help me please

724884278.jpe
 
Physics news on Phys.org
manal950 said:
Hi

here is question with answer

please can help me from where we got

1 + 9

and

-2+9

help me please

724884278.jpe
What is \displaystyle \ \ \left(\text{D}^2+9\right)\left(Ae^x\right)\ ?

What is \displaystyle \ \ \left(\text{D}^2+9\right)\left(B\cos(2x)\right)\ ?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top