Topology question - is this function an open map? sin(1/x)

winter85
Messages
33
Reaction score
0

Homework Statement



This problem is from Schaum's Outline, chapter 7 #38 i believe.
Let f: (0, inf) -> [-1,1] be given as f(x) = sin(1/x), where R is given the usual euclidean metric topology and (0,inf) and [-1,1] are given the relative subspace topology.
Show that f is not an open map.

The Attempt at a Solution



I thought about this for so long but I can't see how this function is not an open map. Let A be an open subset of (0,inf) (we can take A to be an interval of the form (a,b) since these form a base for the topology). Pick any point x in A. Then there is an open neighborhood G of x that lies in A. If f is monotone in an open neighborhood of x, I can intersect that neighborhood with G to get a neighborhood H of x, lying inside A, on which f is monotone. Clearly in that case f[H] would be of the form (a,b) subset of [-1,1].
For the case when f is not monotone on any neighborhood of x, this only happens when f[x] = 1 or f[x] = -1. in this case, any open neighborhood of x would map to an interval of the form (a,1] or [-1, a). This is open in [-1,1] under the relative subspace topology.
Doesn't this show that f is open?
Any help would be greatly appreciated, thanks.
 
Physics news on Phys.org
inspect 0 more. what does an open neighborhood (0, x) map into?
 
I've thought of that, but any such interval maps to the whole codomain [-1,1], which is open in the relative topology, so not really sure how that helps?
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top