Torque to linear force conversion and units

AI Thread Summary
Confusion often arises between foot-pounds and inch-pounds when calculating torque, especially in applications involving threaded components. To convert foot-pounds to inch-pounds, multiply by 12, which is essential for accurate calculations. In this case, applying 100 foot-pounds of torque converts to 1200 inch-pounds, and dividing this by the radius of 0.875 inches yields a linear force of 1371 pounds. Multiplying this force by the mechanical advantage of 56 results in a calculated force of 76,776 pounds, which seems excessively high. The discussion highlights the importance of understanding torque to linear force conversion while acknowledging the potential for thread stripping at such high forces.
10mm
Messages
4
Reaction score
0
I always get my foot-lbs and inch lbs confused and don't know if I am applying the correct unit. If I wanted to know how much linear force I can create from a given amount of torque I apply to a thread, I know that I need to find the mechanical advantage of the thread and the torque applied. I am just wanting to make sure the torque to linear force conversion is correct so I am going to leave out any friction loss etc..
I have a 1.50-12 threaded ring and say the od of this ring is 1.75". First, I find the mechanical advantage of the thread by calculating (1.50 X Pi)/ thread pitch.
1.50 x 3.1416 / .0833=56 mechanical advantage.
Now, here is where I get confused. Since I am working in inches, do I use inch lbs? If I want to apply 100 foot-lbs torque to the ring, do I use inch pounds and convert the 100 foot-lbs to 1200 inch-lbs?
Now, I am applying a torque of 1200 inch-lbs to a threaded ring with a od of 1.75 which is a .875 radius. If I divide 1200 inch-lbs by .875", I get 1371 lbs. Is this correct? Do I then multiply the 1371lbs by the mechanical advantage of 56 which is 76,776 lbs? This seems very high. I still think I am missing something when trying to get a linear force from a know applied torque.

Again, I am using a threaded ring as a example. The ring can be screwing onto a threaded rod that is welded onto a plate and the ring will butt up against the plate and I simply want to know how much linear force I am pulling on this threaded rod.
Thanks for any input.
 
Last edited:
Engineering news on Phys.org
PLease explain. The mechanical advantage of he thread is correct. If I have a 1.50"-12 stub acme thread.
thd diameter X Pi / lead(distance between thds)
1.50 ∏ / .0833 = 56
which is the same as 2∏r/lead that is shown in the link you provided

My actual question was if I have a ring(or nut) with a 1.50-12 thread and the od of the ring is 1.75", and I want to see what kind of linear force I generate from applying 100ft-lbs to the od of the ring, do I use inch pounds (100 x 12=1200 inch lbs)
.875" is the distance from center or radius
1200 in-lbs /.875 =1371lbs

Then I multiply this by the mechanical advantage of 56, this comes to 76,776 lbs

Im not an engineer. I am not even that good in math. I work in QC and ask too many questions. One of our mechanical engineers at work quickly explained to me why he made a change on his design. He quickly explained it to me. I just wanted to know if I understood it. My question was more about the torque to linear force than anything. The MA created by the thread was just something else that I had to show because it was also a variable. I just like to problem solve to my abilities. I posted this to find out if I totally missed the boat, or if I am close.
Again, all feedback is welcome.
 
The screw thread acts like a ramp - so a small force can lift a larger force.
Although the applied force gets amplified a great deal, it is at the expense of speed ...

The calculation is correct for the given details.
The link I gave you spells it out.
 
thank you Simon. I should have described the threaded rod sliding inside of another tube. The threaded rod is keyed to the tube so it cannot turn. So when torque is applied to the nut, it pulls the threaded rod thru the outer tube. The force that the calculations were giving me seemed so high (76,776 lbs), I didnt think it could be correct. My confusion was based mostly around if I was using inch pounds and converting the torque to a linear force. I find this stuff to be fun.
 
Last edited:
It would definitely crack a nut.
Explains why a vice is so strong.

it is pretty shocking - 12 turns an inch is not all that fine ... but I would imagine that applying that torque risks stripping the thread.
 
Here's a video by “driving 4 answers” who seems to me to be well versed on the details of Internal Combustion engines. The video does cover something that's a bit shrouded in 'conspiracy theory', and he touches on that, but of course for phys.org, I'm only interested in the actual science involved. He analyzes the claim of achieving 100 mpg with a 427 cubic inch V8 1970 Ford Galaxy in 1977. Only the fuel supply system was modified. I was surprised that he feels the claim could have been...
Thread 'Turbocharging carbureted petrol 2 stroke engines'
Hi everyone, online I ve seen some images about 2 stroke carbureted turbo (motorcycle derivation engine). Now.. In the past in this forum some members spoke about turbocharging 2 stroke but not in sufficient detail. The intake and the exhaust are open at the same time and there are no valves like a 4 stroke. But if you search online you can find carbureted 2stroke turbo sled or the Am6 turbo. The question is: Is really possible turbocharge a 2 stroke carburated(NOT EFI)petrol engine and...
Back
Top