Torricelli's Theorem and etc. help

  • Thread starter Thread starter crhscoog
  • Start date Start date
  • Tags Tags
    Theorem
AI Thread Summary
The discussion revolves around solving a physics problem related to Torricelli's Theorem involving a tank filled with saltwater. The calculations include determining the force exerted by the water on a drain plug, the speed of water exiting the hole, and the volume flow rate. The correct approach for calculating the force involves using the water pressure at a specific depth, factoring in the given density of saltwater. After adjustments and corrections, the final force calculated is approximately 12.088 N. The participants express gratitude for the assistance provided in clarifying the concepts.
crhscoog
Messages
16
Reaction score
0

Homework Statement


A large tank, 25m in height and open at the top, is completely filled with saltwater (density of 1025kg/m^3). A small drain plug witha cross- sectional area of 4.0 x 10^-5 m^2 is located 5 m from the bottom of the tank.

a. calculate the force exerted by the water on the plug before the plug breaks
b. calculate the speed of the water as it leaves the hole in the side of the tank.
c. calculate the volume flow rate of the water from the hole.

The Attempt at a Solution



for b i used bernoulli's equation to solve this.
P1 + pgy1 + (1/2)pv^2 = P2 + pgy2 + (1/2)pv^3
reduced down to: v = sqr(2gh)
v= sqr((2)(9.8)(20))
v is approx 19.8 m/s

for c, flow rate = av
(4.0 x 10^-5 m^2)(19.8)
7.9196 x 10^-4

for a, f= pa
f= 101300 x (4.0 x 10^-5 m^2)

this right?
 
Last edited:
Physics news on Phys.org
Hi crhscoog,

crhscoog said:

Homework Statement


A large tank, 25m in height and open at the top, is completely filled with saltwater (density of 1025kg/m^3). A small drain plug witha cross- sectional area of 4.0 x 10^-5 m^2 is located 5 m from the bottom of the tank.

a. calculate the force exerted by the water on the plug before the plug breaks
b. calculate the speed of the water as it leaves the hole in the side of the tank.
c. calculate the volume flow rate of the water from the hole.

The Attempt at a Solution



for b i used bernoulli's equation to solve this.
P1 + pgy1 + (1/2)pv^2 = P2 + pgy2 + (1/2)pv^3
reduced down to: v = sqr(2gh)
v= sqr((2)(9.8)(20))
v is approx 19.8 m/s

for c, flow rate = av
(4.0 x 10^-5 m^2)(19.8)
7.9196 x 10^-4

for a, f= pa
f= 101300 x (4.0 x 10^-5 m^2)

I don't believe this is correct. This would give the force from the air on the plug, but you want to find the force from the water on the plug. Do you see how to find that?
 
alphysicist said:
Hi crhscoog,
I don't believe this is correct. This would give the force from the air on the plug, but you want to find the force from the water on the plug. Do you see how to find that?

hmm i see what you mean. ill look into my notes and see if i can find anything on it.

*from a glance at the notes, would it have to do something with absolute pressure?
 
crhscoog said:
hmm i see what you mean. ill look into my notes and see if i can find anything on it.

*from a glance at the notes, would it have to do something with absolute pressure?

You need to find the water pressure at that point, which is 20m below the surface. What would that be?
 
alphysicist said:
You need to find the water pressure at that point, which is 20m below the surface. What would that be?

pgh 1000 x 9.8 x 20 = 196000 Pa
 
Last edited:
crhscoog said:
pgh 1000 x 9.8 x 20 = 196000 Pa

That's the right idea; however they give a density (not 1000), and also what you have here is just the increase in pressure; remember that the full formula is:

<br /> P = P_0 + \rho g h<br />
 
alphysicist said:
That's the right idea; however they give a density (not 1000), and also what you have here is just the increase in pressure; remember that the full formula is:

<br /> P = P_0 + \rho g h<br />

ah right forgot about the given density

P= 101300 + (1025)(9.8)(20)
P= 200900 Pa

Using P=f/a, I multiply 200900 by (4.0 x 10^-5) to get:
f= 8.036 N
 
crhscoog said:
ah right forgot about the given density

P= 101300 + (1025)(9.8)(20)
P= 200900 Pa

I think you forgot to add the first term.
 
alphysicist said:
I think you forgot to add the first term.

ah snap. I am rushing this... sry =D

P(total)= 302200 Pa
F= 302200 x .00004
F= 12.088 N
 
  • #10
crhscoog said:
ah snap. I am rushing this... sry =D

P(total)= 302200 Pa
F= 302200 x .00004
F= 12.088 N

That looks right to me for the water force on the plug.
 
  • #11
alphysicist said:
That looks right to me for the water force on the plug.

thank you for your time, patience, and help. i really appreciate it!
 
  • #12
You're welcome; I'm glad to help!
 

Similar threads

Back
Top