Trace of a product of gamma matrices

BVM
Messages
9
Reaction score
0

Homework Statement


A proof of equality between two traces of products of gamma matrices.

Tr(\gamma^\mu (1_4-\gamma^5) A (1_4-\gamma^5) \gamma^\nu) = 2Tr(\gamma^\mu A (1_4-\gamma^5) \gamma^\nu)

Where no special property of A is given, so we must assume it is just a random 4x4 matrix.
1_4 represents the 4x4 unity matrix.

Homework Equations


\gamma^5 := i\gamma^0 \gamma^1 \gamma^2 \gamma^3
The usual product and trace identities as found here.

The Attempt at a Solution


I have been able to prove that
Tr(\gamma^\mu (1_4-\gamma^5) A (1_4-\gamma^5) \gamma^\nu) = Tr(\gamma^\mu A (1_4-\gamma^5) \gamma^\nu) + Tr(\gamma^5 \gamma^\mu A (1_4-\gamma^5) \gamma^\nu)
using the definition of the trace and the anticommutativity of the \gamma^\mu and \gamma^5.
 
Last edited:
Physics news on Phys.org
BVM said:
I have been able to prove that
Tr(\gamma^\mu (1_4-\gamma^5) A (1_4-\gamma^5) \gamma^\nu) = Tr(\gamma^\mu A (1_4-\gamma^5) \gamma^\nu) + Tr(\gamma^5 \gamma^\mu A (1_4-\gamma^5) \gamma^\nu)
using the definition of the trace and the anticommutativity of the \gamma^\mu and \gamma^5.

For your last term, try using the fact that the trace is invariant under any cyclic permutation of the matrices inside the trace. So, you can move the γ5 on the left to the far right. Then simplify (14 - γ5) γ##^\nu## γ5.
 
TSny said:
For your last term, try using the fact that the trace is invariant under any cyclic permutation of the matrices inside the trace. So, you can move the γ5 on the left to the far right. Then simplify (14 - γ5) γ##^\nu## γ5.

Got it! That hint really helped. Thanks.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top