Trajectory vs. time from parametric equations of motion

BruceW~
Messages
16
Reaction score
2

Homework Statement



Sketch the trajectory over the time interval 0 ≤ t ≤ 10 of the particle whose parametric equations of motion are given by X= t−3sint . And y = 4 − 3cost find the value of x,y,t

Remember that you should be in Radian mode!

Answer
Do you isolate the t first and plug it in into one of the function above and solve it ? Any suggestion, help and answer will be helpful.
 
Physics news on Phys.org
You do not isolate t.

A graphing calculator can do it, or you can make a table of values:

t x y
0
0.5
1.0
1.5

...

Once you have a table, plot x and y in the usual way.
 
Dr. Courtney said:
You do not isolate t.

A graphing calculator can do it, or you can make a table of values:

t x y
0
0.5
1.0
1.5

...

Once you have a table, plot x and y in the usual way.
ok, thank you
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top