Transform Cylindrical coordinates into Cartesian Coordiantes

kexanie
Messages
11
Reaction score
0
I've learned that a vector in coordinate system can be expressed as follows:
A = axAx+ayAy+azAz.
ai, i = x, y, z, are the base vectors.
The transformation matrix from cylindrical coordinates to cartesian coordiantes is:
Ax cosΦ -sinΦ 0 Ar
Ay = sinΦ cosΦ 0 mutiplye by AΦ
Az 0 0 1 Az

and the conversion formula
x = rcosΦ
y = rsinΦ
z = z

  1. What's the difference between this two kind of equations?
  2. Why Ax is not equal to x?
  3. I was told that Ax might be a function of x, y and z. Is the latter kind of equaltions has a prerequisite that ax = (1, 0, 0), but in the first kind of equations, the base vector can be anything else?
  4. From the matrix, Ax = cosΦAr - sinΦAΦ, that is not equal to x = rcosΦ !? Why? How should I apply the transformation matrix?
Thanks in advance.
 
Physics news on Phys.org
Ax cosΦ -sinΦ 0 Ar
Ay = sinΦ cosΦ 0 mutiplye by AΦ
Az 0 0 1 Az
Above is confusing - looks like typos.
 
sorry, it should be
Unnamed QQ Screenshot20141009091728.png
. The formula was not inserted successfully.
 
Last edited:
The matrix formulation looks like a rotation of the (x,y) coordinates around the z axis through an angle φ, not a conversion from cylindrical to cartesian coordinates.
 
  • Like
Likes platetheduke
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
Back
Top