Transforming divergence from cartesian to cylindrical coordinates

jaejoon89
Messages
187
Reaction score
0

Homework Statement



Compute the divergence in cylindrical coordinates by transforming the expression for divergence in cartestian coordinates.

Homework Equations



F = F_x i + F_y j + F_z k
div F = ∂F_x/∂x + ∂F_y/∂y + ∂F_z/∂z ... (divergence in Cartesian coordinates)

I need to transform this into

divF = (1/rho)(∂(rho*F_rho)/∂rho) + (1/rho)(∂F_theta/∂theta) + ∂F_z/∂z ... (divergence in cylindrical coordinates)

The Attempt at a Solution



Using the chain rule,
∂F_x/∂x = (∂F_x/∂rho)(∂rho/∂x) + (∂F_x/∂theta)(∂theta/∂x) + (∂F_x/∂z)(∂z/∂x)
∂F_y/∂y = (∂F_y/∂rho)(∂rho/∂y) + (∂F_y/∂theta)(∂theta/∂y) + (∂F_y/∂z)(∂z/∂y)
∂F_z/∂z = (∂F_z/∂rho)(∂rho/∂z) + (∂F_z/∂theta)(∂theta/∂z) + (∂F_z/∂z)(∂z/∂z)

∂rho/∂x = x/∂ = costheta
∂theta/∂x = -y/rho^2 = -sintheta/rho
∂z/∂x = 0
∂rho/∂y = y/∂ = sintheta
etc. (these are the transformational equations)

Then I try inputing this into the cartesian definition for divergence and obtain
divF = [(∂F_x/∂rho)costheta + (∂F_x/∂theta)(-sintheta/rho)] + [(∂F_y/∂rho)sintheta + (∂F_y/∂theta)(costheta/rho)] + ∂F_z/∂z

But how does that simplify to the expression in cylindrical coordinates?
 
Physics news on Phys.org
any 1 here pleasezzzzzzzzzzzzz. solve this!
i also need divergence in spherical!
 
jaejoon89 said:

Homework Statement



Compute the divergence in cylindrical coordinates by transforming the expression for divergence in cartestian coordinates.

Homework Equations



F = F_x i + F_y j + F_z k
div F = ∂F_x/∂x + ∂F_y/∂y + ∂F_z/∂z ... (divergence in Cartesian coordinates)

I need to transform this into

divF = (1/rho)(∂(rho*F_rho)/∂rho) + (1/rho)(∂F_theta/∂theta) + ∂F_z/∂z ... (divergence in cylindrical coordinates)

The Attempt at a Solution



Using the chain rule,
∂F_x/∂x = (∂F_x/∂rho)(∂rho/∂x) + (∂F_x/∂theta)(∂theta/∂x) + (∂F_x/∂z)(∂z/∂x)
∂F_y/∂y = (∂F_y/∂rho)(∂rho/∂y) + (∂F_y/∂theta)(∂theta/∂y) + (∂F_y/∂z)(∂z/∂y)
∂F_z/∂z = (∂F_z/∂rho)(∂rho/∂z) + (∂F_z/∂theta)(∂theta/∂z) + (∂F_z/∂z)(∂z/∂z)

∂rho/∂x = x/∂ = costheta[/math]
∂theta/∂x = -y/rho^2 = -sintheta/rho
∂z/∂x = 0
∂rho/∂y = y/∂ = sintheta
etc. (these are the transformational equations)

Then I try inputing this into the cartesian definition for divergence and obtain
divF = [(∂F_x/∂rho)costheta + (∂F_x/∂theta)(-sintheta/rho)] + [(∂F_y/∂rho)sintheta + (∂F_y/∂theta)(costheta/rho)] + ∂F_z/∂z

But how does that simplify to the expression in cylindrical coordinates?
You haven't said anything about what F_\rho and F_\theta are in terms of F_x and F_y.
 
lets assume that fx=f_rho*cos(theta)-f_theta*sin(theta)
fy=f_rho*sin(theta)+f_theta*cos(theta)
 
oooh, this is all virtually unreadable :rolleyes:

can everybody please use the usual symbols? … :smile:
 
ok
fx=fρ*cosφ-fφ*sinφ
fy=fρ*sinφ+fφ*cosφ
 
Nay 1 here pleaseeeeeeeeeee solve this
i need it badly!
 
dibya said:
lets assume that fx=f_rho*cos(theta)-f_theta*sin(theta)
fy=f_rho*sin(theta)+f_theta*cos(theta)

Okay, then
\frac{\partial f_x}{\partial\rho}=\frac{\partial}{\partial\rho}(f_\rho\cos\theta-f_\theta\sin\theta)=\frac{\partial f_\rho}{\partial\rho}\cos\theta-\frac{\partial f_\theta}{\partial\rho}\sin\theta

Right?
jaejoon89 said:
Then I try inputing this into the cartesian definition for divergence and obtain
divF = [(∂F_x/∂rho)costheta + (∂F_x/∂theta)(-sintheta/rho)] + [(∂F_y/∂rho)sintheta + (∂F_y/∂theta)(costheta/rho)] + ∂F_z/∂z

But how does that simplify to the expression in cylindrical coordinates?

Calculate \frac{\partial f_y}{\partial\rho}, \frac{\partial f_x}{\partial\theta} and \frac{\partial f_y}{\partial\theta} the same way and substitute them all into this expression.
 
Back
Top