Transmitting portion of a transmitter works

  • Thread starter Thread starter Aethaeon
  • Start date Start date
  • Tags Tags
    Transmitter Works
AI Thread Summary
The discussion focuses on how the transmitting portion of a transmitter generates electromagnetic (EM) waves, particularly through the use of antennas. It explains that EM waves are produced by accelerating charges at specific frequencies, with crystal oscillators or variable frequency oscillators (VFOs) used to create the signal. The signal is amplified and matched to the antenna's impedance for efficient radiation. The oscillation of electrons in the antenna occurs due to the alternating current provided by the power source, and the antenna's length must correspond to the wavelength for optimal radiation. A practical example illustrates that using a power cord as an antenna would require impractically long lengths to generate significant EM waves at standard outlet frequencies.
Aethaeon
Messages
4
Reaction score
0
(Update -- please read the third post -- I guess I'm wondering how an antenna works in particular).Hey,

I can't seem to find much information on how the actually transmitting portion of a transmitter works -- how does one efficiently generate EM waves?

Thanks!(I'm aware that the rough idea is to accelerate charges back and forth at a particular frequency, what I want to know is how one actually goes about doing that)
 
Last edited:
Physics news on Phys.org


Welcome to PF. Briefly, EM waves in the radio frequency band are generated using crystal oscillators or VFOs. The signal is then amplified to the desired power level and fed to the antenna through a matching network which matches the impedance of the amplifier to the impedance of the transmission line. Modulation of the signal depends on the mode (AM, FM, SSB etc...) You may find one or more of these books of interest:
http://www.arrl.org/catalog/index.php3?category=Help+for+Beginners
 
Last edited by a moderator:


Thanks for the reply, TurtleMeister.

I should clarify exactly what I was wondering --

Suppose I already have a signal that I want to transmit, and its already amplified, etc. How do I actually turn that signal into EM waves?

I guess, basically, I don't understand how to analyze how an antenna works. Since an antenna is conductive, so there's no potential across any parts of it -- why do electrons in the antenna oscillate?

If I hack apart a power cord to get a plug and two bare wires, I ground one and leave the other one free, and then plug it in, will I get strong EM waves at 60 Hz (outlet frequency)?
 


The electrons oscillate in an antenna for the same reason they oscillate in an electric light bulb. They are forced to do so by the power source. However, that is where the similarity ends. The difference is in the frequency of oscillation.

The antenna may seem like an open circuit but it's not at rf frequencies. The reason has to do with the frequency and the length of the antenna. When a dipole antenna is excited with RF, electrons will flow back and forth at nearly the speed of light. When the antenna length matches the wavelength of the RF then the antenna will radiate with maximum efficiency. The length of the dipole can be determined by: l = 468,000,000 / f where l is the antenna length in feet and f is the frequency in hertz. The antenna is not an open circuit because the electrons never have time to travel farther than the wavelength of the frequency.

Aethaeon said:
If I hack apart a power cord to get a plug and two bare wires, I ground one and leave the other one free, and then plug it in, will I get strong EM waves at 60 Hz (outlet frequency)?
No. If you use the formula you will see that your power cord would need to be 7,800,000 feet long.

Edit: Actually, since you're grounding one side of the power cord it would be 3,900,000 feet for a quarter wave.
 
Last edited:


As a means of monitoring activity in a number of manufacturing facilities, marine research, and general production control, a pressure transmitter will not only help to ensure positive results; it also can be a great way of maintaining acceptable levels of safety.

1. a. An electronic device that generates and amplifies a carrier wave, modulates it with a meaningful signal derived from speech or other sources, and radiates the resulting signal from an antenna. b. The portion of a telephone that converts the incident sounds into electrical impulses that are conveyed to a remote receiver. c. A telegraphic sending instrument. 2. A neurotransmitter.
 
Thread 'Is 'Velocity of Transport' a Recognized Term in English Mechanics Literature?'
Here are two fragments from Banach's monograph in Mechanics I have never seen the term <<velocity of transport>> in English texts. Actually I have never seen this term being named somehow in English. This term has a name in Russian books. I looked through the original Banach's text in Polish and there is a Polish name for this term. It is a little bit surprising that the Polish name differs from the Russian one and also differs from this English translation. My question is: Is there...
I know that mass does not affect the acceleration in a simple pendulum undergoing SHM, but how does the mass on the spring that makes up the elastic pendulum affect its acceleration? Certainly, there must be a change due to the displacement from equilibrium caused by each differing mass? I am talking about finding the acceleration at a specific time on each trial with different masses and comparing them. How would they compare and why?
Back
Top