SubZer0
- 19
- 0
Hi all,
Can anybody explain the Transport Theorem (http://en.wikipedia.org/wiki/Rotating_reference_frame#Relating_rotating_frames_to_stationary_frames) in more non-physicist terms? I simply can't wrap my head around the visual of this theorem, which has the gist of:
d/dt f = df/dt + (angular velocity) x f(t)
Where f(t) represents the position in time.
I simply cannot visualise the result. If I use an angular velocity vector of [0, 1, 0] (rotation around y axis), and a position of [0.5, 0, 0], the resulting derivative is [0, 0, -0.5]. I would at least expect a time derivative with changes of x, and z, instead of just z. Am I not understanding the actual *meaning* of the result? If df/dt = [0, 0, 0], I'm assuming that the rotation should result in a derivative vector of something like [x, 0, z], where x and z are some non-zero values?
Thanks!
Can anybody explain the Transport Theorem (http://en.wikipedia.org/wiki/Rotating_reference_frame#Relating_rotating_frames_to_stationary_frames) in more non-physicist terms? I simply can't wrap my head around the visual of this theorem, which has the gist of:
d/dt f = df/dt + (angular velocity) x f(t)
Where f(t) represents the position in time.
I simply cannot visualise the result. If I use an angular velocity vector of [0, 1, 0] (rotation around y axis), and a position of [0.5, 0, 0], the resulting derivative is [0, 0, -0.5]. I would at least expect a time derivative with changes of x, and z, instead of just z. Am I not understanding the actual *meaning* of the result? If df/dt = [0, 0, 0], I'm assuming that the rotation should result in a derivative vector of something like [x, 0, z], where x and z are some non-zero values?
Thanks!