Triangle determined by arithmetic and geometric sequences

AI Thread Summary
The discussion focuses on determining triangles where the sides are consecutive elements of a geometric sequence and the angles are consecutive elements of an arithmetic sequence. The angles must sum to 180 degrees, leading to the conclusion that they can be expressed as A, A+1, and A+2, resulting in A being 59 degrees and the angles being 59, 60, and 61 degrees. The use of the law of cosines and relationships between the sides in terms of a common ratio q leads to the conclusion that the only valid configuration is an equilateral triangle. The discussion highlights the interplay between geometric and arithmetic sequences in defining the properties of the triangle.
Robin04
Messages
259
Reaction score
16

Homework Statement


Determine the triangles where the sides are consecutive elements of a geometric sequence and the angles are consecutive elements of an arithmetic sequence.

Homework Equations



The Attempt at a Solution


I don't really know how to approach this problem, what the solution would look like. I suppose it should be one or more equations that link the geometric and the arithmetic sequence.
Maybe the law of cosine but I don't know what to do with the cosines there.
 
Physics news on Phys.org
EDIT: Not all of this is correct, since I misunderstood part of the description.

I don't quite have it either. My attempt right now is this:
Draw triangle. Points A, B, C for the angles. Sides a, b, c which are opposite from the points. Lower case for the sides and upper case for the vertices.

Accordingly with your given conditions,
c/b=b/a
and
B=A+1 and C=A+2

Angle Sum requirement should mean that A+B+C=180 degrees;
A+(A+1)+(A+2)=180
A=59

Now, since A is found and you expected as described arithmetic progression,
A=59
and
B=60
and
C=61.Next appears to be Law Of Sines as useful.
sin(59)/a=sin(60)/b=sin(61)/c
and this chain of equalities can be cut down by one variable
if trying a=(1/c)b^2
then
sin(59)/((b^2)/c)=sin(60)/b=sin(61)/c-----------which can be split into TWO equations in TWO variables of b and c.I have not worked further...

(See above. Some of the work is wrong.)
 
Last edited:
  • Like
Likes Robin04
Robin04 said:

Homework Statement


Determine the triangles where the sides are consecutive elements of a geometric sequence and the angles are consecutive elements of an arithmetic sequence.

Homework Equations



The Attempt at a Solution


I don't really know how to approach this problem, what the solution would look like. I suppose it should be one or more equations that link the geometric and the arithmetic sequence.
Maybe the law of cosine but I don't know what to do with the cosines there.

Yes, use the law of cosines with the one angle you know.
 
  • Like
Likes Robin04
I found it! This can only be an equilateral triangle.

First I played with the angle as https://www.physicsforums.com/members/symbolipoint.58864/ suggested.
Let the angles be ##\alpha_1 , \alpha_2, \alpha_3##
##\alpha_1## must be given by the arithmetic sequence, and then
##\alpha_2 = \alpha_1 + d##
##\alpha_3 = \alpha_1 + 2d##

As they must add up to 180 degrees, we get that ##\alpha_2 = 60^{\circ} , and \alpha_3 = \alpha_1 + d## , which was quite suprising for me.
Then I used the law of cosines and substituted the sides with the following notation:
Sides are ##x_1, x_2, x_3##
##x_2 =x_1 \cdot q##
##x_3 = x_1 \cdot q^2##

Got the following equations:
##q^2 + q^4 -2q^3 \cos{\alpha_1} -1 = 0##
##q^4-2q^2+1 = 0##
##1+q^2-q^4-q(\cos{d} - \sqrt{3} \sin{d}) = 0##

From the second equation we get that q can be 1 and -1, substituting those into the first one we get that ##\alpha_1## is 60 degrees too, so this has to be an equilateral triangle. I don't know any method to solve the third equation for d but d=0 works fine.
 
  • Like
Likes Delta2
Trigonometry is my favourite part of math. So thanks for the interesting question and well done for solving it.
 
  • Like
Likes Robin04
I obviously misunderstood part of the description: Arithmetic Sequence instead of Consecutive Whole Numbers. Why did I do that? Otherwise my method was good(? maybe).
 
Robin04 said:
I found it! This can only be an equilateral triangle.

First I played with the angle as https://www.physicsforums.com/members/symbolipoint.58864/ suggested.
Let the angles be ##\alpha_1 , \alpha_2, \alpha_3##
##\alpha_1## must be given by the arithmetic sequence, and then
##\alpha_2 = \alpha_1 + d##
##\alpha_3 = \alpha_1 + 2d##

As they must add up to 180 degrees, we get that ##\alpha_2 = 60^{\circ} , and \alpha_3 = \alpha_1 + d## , which was quite suprising for me.
Then I used the law of cosines and substituted the sides with the following notation:
Sides are ##x_1, x_2, x_3##
##x_2 =x_1 \cdot q##
##x_3 = x_1 \cdot q^2##

Got the following equations:
##q^2 + q^4 -2q^3 \cos{\alpha_1} -1 = 0##
##q^4-2q^2+1 = 0##
##1+q^2-q^4-q(\cos{d} - \sqrt{3} \sin{d}) = 0##

From the second equation we get that q can be 1 and -1, substituting those into the first one we get that ##\alpha_1## is 60 degrees too, so this has to be an equilateral triangle. I don't know any method to solve the third equation for d but d=0 works fine.

If the angles are ##\alpha_1, \alpha_1+d## and ##\alpha_1+2d##, they need to add up to ##180^{\circ},## so you need
$$3 \alpha_1 + 3d = 180 \hspace{3ex} (1)$$ Any ##\alpha_1 > 0## and ##d \geq 0## that satisfy (1) will give the angles of a valid triangle, and that means that there will be infinitely many possibilities.
 
Ray Vickson said:
If the angles are ##\alpha_1, \alpha_1+d## and ##\alpha_1+2d##, they need to add up to ##180^{\circ},## so you need
$$3 \alpha_1 + 3d = 180 \hspace{3ex} (1)$$ Any ##\alpha_1 > 0## and ##d \geq 0## that satisfy (1) will give the angles of a valid triangle, and that means that there will be infinitely many possibilities.
But there's another condition: the sides should be three consecutive elements of a geometric sequence. That cannot be satisfied only by (1).
 
Back
Top