Triangle Inequality Proving: Use Sine Law & Find Solution

sharpycasio
Messages
16
Reaction score
0

Homework Statement


Prove the following inequality for any triangle that has sides a, b, and c.

-1<\frac{a}{b}+\frac{b}{c}+\frac{c}{a}-\frac{b}{a}-\frac{a}{c}-\frac{c}{b}<1

Homework Equations


The Attempt at a Solution



I think we have to use sine or cosine at a certain point because the bounds of the inequality are the same as the bounds of the two functions' ranges. Perhaps the Sine Law since that applies to all triangles? Tried rearranging it, pairing up the reciprocals. Maybe the fractions represent ratios (sin(\theta))

-1<(\frac{a}{b}-\frac{b}{a})+(\frac{b}{c}-\frac{c}{b})+(\frac{c}{a}-\frac{a}{c})<1

I'm stuck. Please help. Thanks.
 
Physics news on Phys.org
I am sorry for reposting the same question. It's just that I've been working on it for hours and I really have to solve it for tomorrow. My apologies.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top