Trig Integration By Substitution

Rachael95
Messages
2
Reaction score
0
Mod note: Moved from technical math section[/color]
∫(2x+6)/sqrt(5-4x-x^2)

I have 2/3(ln|tan(theta)+sec(theta)|-3|cos(theta)|) where x=sin^-1((x+2)/3)
 
Last edited by a moderator:
Physics news on Phys.org
Rachael95 said:
∫(2x+6)/sqrt(5-4x^2-x^2)

Are there supposed to be two x^2 expressions under the SQRT?
 
Apologies no it should be 5-4x-x^2
 
Complete the square in the square root: 5- 4x- x^2= 5- (x^2+ 4x+ 4- 4)= 5- (x+ 2)^2+ 4= 9- (x+ 2)^2.<br /> <br /> Now make the substitution u= x+ 2, du= dx, x= u- 2 so 2x+ 6= 2u+ 2. The integral becomes \int \frac{2u+ 2}{\sqrt{9- u^2} du<br /> <br /> Now let u= 3 sin(\theta).
 
Homework-type problems should be posted in the Homework & Coursework section. I have moved this thread.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top