• Support PF! Buy your school textbooks, materials and every day products Here!

Trig Limit

  • #1

Homework Statement



I tried to solve this limit, but failed in the process 'cause the answer's 1 but I get 0. I'd just like for you to check out my steps and tell me what I've done wrong, not post a different solution. Thanks in advance.

[tex]\mathop {\lim }\limits_{x \to 0} \frac{{2\sin \left( x \right) - \sin \left( {2x} \right)}}{{{x^3}}}[/tex]


Homework Equations



[tex]\mathop {\lim }\limits_{x \to 0} \frac{{\sin \left( x \right)}}{x} = 1[/tex]

The Attempt at a Solution



[tex]\begin{array}{l}
\mathop {\lim }\limits_{x \to 0} \frac{{2\sin \left( x \right) - \sin \left( {2x} \right)}}{{{x^3}}} = \mathop {\lim }\limits_{x \to 0} \frac{{2\sin \left( x \right)}}{{{x^3}}} - \frac{{\sin \left( {2x} \right)}}{{{x^3}}} = \mathop {\lim }\limits_{x \to 0} \left( 2 \right)\left( {\frac{{\sin \left( x \right)}}{x}} \right)\left( {\frac{1}{{{x^2}}}} \right) - \left( {\frac{{\sin \left( {2x} \right)}}{{2x}}} \right)\left( {\frac{2}{{{x^2}}}} \right) \\
= \mathop {\lim }\limits_{x \to 0} \left( 2 \right)\left( 1 \right)\left( {\frac{1}{{{x^2}}}} \right) - \left( 1 \right)\left( {\frac{2}{{{x^2}}}} \right) = \mathop {\lim }\limits_{x \to 0} \frac{2}{{{x^2}}} - \frac{2}{{{x^2}}} = 0 \\
\end{array}[/tex]
 

Answers and Replies

  • #2
360
0

The Attempt at a Solution



[tex]\begin{array}{l}
\mathop {\lim }\limits_{x \to 0} \frac{{2\sin \left( x \right) - \sin \left( {2x} \right)}}{{{x^3}}} = \mathop {\lim }\limits_{x \to 0} \frac{{2\sin \left( x \right)}}{{{x^3}}} - \frac{{\sin \left( {2x} \right)}}{{{x^3}}} = \mathop {\lim }\limits_{x \to 0} \left( 2 \right)\left( {\frac{{\sin \left( x \right)}}{x}} \right)\left( {\frac{1}{{{x^2}}}} \right) - \left( {\frac{{\sin \left( {2x} \right)}}{{2x}}} \right)\left( {\frac{2}{{{x^2}}}} \right)[/tex]
Your mistake is right here. You can't selectively apply limits to some terms but not to others. In this case, you took the limit of [itex] \frac{\sin{x}}{x} [/itex], but not of [itex] \frac{1}{x^2} [/itex] or [itex] \frac{2}{x^2} [/itex].

Have you seen L'Hôpital's rule yet? It seems like the easiest way to solve it to me.
 
Last edited:
  • #3
lurflurf
Homework Helper
2,432
132
Why would we want to use L'Hôpital's rule? In most calculus books this would be like a chapter 3 question, and L'Hôpital's rule would be in like chapter 10.

[tex]\frac{{2\sin x -\sin 2 x }{x^3}}=\left( \frac{{\sin \frac{{x}{2}} }{\frac{{x}{2}}\right) }^3\cos \frac{{x}{2}} [/tex]
 
Last edited:
  • #4
Thanks a lot spamiam and lurflurf!
 
  • #5
dextercioby
Science Advisor
Homework Helper
Insights Author
12,985
540
[tex] \frac{2\sin x - \sin 2x}{x^3} = 2\frac{\sin x}{x} \frac{1-\cos x}{x^2} = 2\frac{\sin x}{x} 2\frac{\sin^2 \frac{x}{2}}{x^2} =\frac{\sin x}{x}\frac{\sin^2 \frac{x}{2}}{\left(\frac{x}{2}\right)^2} [/tex]

and this way you'll get the answer.
 

Related Threads on Trig Limit

  • Last Post
Replies
7
Views
1K
  • Last Post
Replies
6
Views
1K
  • Last Post
Replies
2
Views
19K
  • Last Post
Replies
3
Views
1K
  • Last Post
Replies
2
Views
822
  • Last Post
Replies
9
Views
1K
  • Last Post
Replies
5
Views
1K
  • Last Post
Replies
10
Views
3K
  • Last Post
Replies
1
Views
831
  • Last Post
Replies
3
Views
613
Top