Integrate sqrt(1 + x^2) / x: Trig Substitution

In summary, there are two possible approaches to integrating $\sqrt{1+x^2}/x$. One method involves using a trig substitution, while the other involves using a substitution and partial fractions. Both methods lead to the same final answer of $-\ln\left|\frac{1}{x}+\sqrt{1+\frac{1}{x^2}}\right|+\sqrt{1+x^2}+C$.
  • #1
annie122
51
0
how do u integrate sqrt(1 + x^2) / x??
i reduced this to sec^3(u)/tan(u) but how do i go from here??
 
Physics news on Phys.org
  • #2
Re: trig substitution

You can do it without trig substitution.

$$ \int \frac{\sqrt{1+x^{2}}}{x} \ dx $$

Let $u^{2} = 1+x^{2}$.

Then

$$\int \frac{\sqrt{1+x^{2}}}{x} \ dx = \int \frac{u^{2}}{x^{2}} \ du = \int \frac{u^{2}}{u^{2}-1} \ du$$

$$ = \int \Big( 1 + \frac{1}{u^{2}-1} \Big) \ du = \int \Big( 1 + \frac{1}{2(u-1)} - \frac{1}{2(u+1)} \Big) \ du$$

$$ = u + \frac{\ln(u-1)}{2} - \frac{\ln(u+1)}{2} + C$$

$$ = \sqrt{1+x^{2}} + \frac{1}{2} \ln (\sqrt{1+x^{2}}-1) - \frac{1}{2} \ln(\sqrt{1+x^{2}}+1) + C $$
 
  • #3
Yuuki said:
how do u integrate sqrt(1 + x^2) / x??
i reduced this to sec^3(u)/tan(u) but how do i go from here??
I would be inclined to do this like Random Variable but since you got this far, sec(u)= 1/cos(u) and tan(u)= sin(u)/cos(u) so that [tex]\frac{sec^3(u)}{tan(u)}= \frac{1}{cos^3(u)}\frac{cos(u)}{sin(u)}= \frac{1}{sin(u)cos^2(u)}[/tex]which has sine to an odd power. We can multiply both numerator and denominator by sin(x) to get [tex]\frac{sin(x)}{sin^2(x)cos^2(x)}= \frac{sin(x)}{(1- cos^2(x))cos^2(x)}[/tex]

Let v= cos(x) so that dv= -sin(x)dx and the integrand becomes [tex]\frac{-dv}{(1- v^2)v^2}[/tex] which can be integrated using "partial fractions".
 
Last edited by a moderator:
  • #4
Hello, Yuuki

I found an approach.
I'm sure someone will have a better way.

[tex]\int \frac{\sqrt{1 + x^2}}{x}\,dx[/tex]

[tex]\text{Let }\,x \,=\,\tan\theta \quad\Rightarrow\quad dx \,=\,\sec^2\!\theta\,d\theta[/tex]

[tex]\text{I reduced this to: }\:\int \frac{\sec^3\!\theta}{\tan\theta}\,d\theta[/tex] . Good!

[tex]\text{Multiply by }\frac{\tan\theta}{\tan\theta}:\;\int\frac{\sec^3 \!\theta\tan\theta}{\tan^2\!\theta}\,d\theta[/tex]

. . [tex]=\;\int\frac{\sec^3\!\theta\tan \theta\,d\theta}{\sec^2\!\theta-1} \;=\;\int\frac{\sec^2\!\theta}{\sec^2\!\theta-1}( \sec\theta\tan\theta\,d\theta) [/tex][tex]\text{Let }u \,=\,\sec\theta \quad\Rightarrow\quad du \,=\,\sec\theta \tan\theta\,d\theta[/tex]

[tex]\text{We have: }\:\int \frac{u^2}{u^2-1}\,du \;=\;\int\left(1 + \frac{1}{u^2-1}\right)du[/tex]

. . . . . . [tex]=\;u + \frac{1}{2}\ln\left|\frac{u-1}{u+1}\right|+C[/tex]

Now back-substitute . . .
 
  • #5
Another solution:

[tex]\int {\frac{{\sqrt {1 + {x^2}} }}{x}\,dx} = \int {\frac{{1 + {x^2}}}{{x\sqrt {1 + {x^2}} }}\,dx} = \int {\frac{{dx}}{{x\sqrt {1 + {x^2}} }}} + \int {\frac{x}{{\sqrt {1 + {x^2}} }}\,dx} ,[/tex]

second integral is easy, but if we want to avoid partial fractions for the first one, put $x=\dfrac1t$ and the integral becomes
[tex] - \int {\frac{{dt}}{{\sqrt {1 + {t^2}} }}} = - \ln \left| {t + \sqrt {1 + {t^2}} } \right| + {k_1}.[/tex]

Finally,

[tex]\int {\frac{{\sqrt {1 + {x^2}} }}{x}\,dx} = - \ln \left| {\frac{1}{x} + \sqrt {1 + \frac{1}{{{x^2}}}} } \right| + \sqrt {1 + {x^2}} + k.[/tex]
 

1. What is trig substitution?

Trig substitution is a method used in calculus to simplify integrals involving expressions with radicals. It involves substituting a trigonometric function for a variable in the integral.

2. Why do we need to use trig substitution for this integral?

In this specific integral, using trig substitution is necessary because the expression inside the radical cannot be simplified using algebraic methods. Trig substitution allows us to rewrite the integral in terms of a trigonometric function that can be easily integrated.

3. How do we choose which trigonometric function to substitute?

The choice of trigonometric function to substitute depends on the form of the expression inside the radical. In this integral, we use the substitution x = tan(θ) because it will eliminate the radical and result in a simpler integral.

4. Can we use other substitutions besides trigonometric functions?

Yes, there are various other substitution methods in calculus, such as u-substitution and integration by parts. However, in this specific integral, trig substitution is the most efficient method.

5. What is the purpose of the square root in the expression?

The square root in the expression is used to simplify the integral and make it easier to integrate. Without the square root, the integral would be more complex and difficult to solve.

Similar threads

  • Calculus
Replies
6
Views
1K
Replies
8
Views
428
  • Calculus
Replies
1
Views
1K
  • Calculus
Replies
9
Views
808
Replies
3
Views
1K
  • Calculus
Replies
29
Views
723
Replies
4
Views
353
  • Calculus
Replies
5
Views
2K
Replies
5
Views
1K
Back
Top