Archimedes II
- 7
- 0
Homework Statement
\displaystyle \int _0 ^a 4x^2 \sqrt{a^2-x^2} dx
Homework Equations
\cos^2 x =1 - \sin^2 x
The Attempt at a Solution
Substuting
Substituting x=a \sin(\theta)
dx=a\cos( \theta) d\theta
x=0
asin\theta=0
sin\theta=0
\theta=0
\displaystyle \int_{0}^{a} 4x^2 \sqrt{a^2-x^2} dx =
\displaystyle \int_{0}^{\pi/2} 4(a\sin\theta)^2 \sqrt{a^2-(a\sin\theta)^2} a\cos\theta d\theta=
\displaystyle \int_{0}^{\pi/2} 4a^2sin^2\theta \sqrt{a^2-a^2sin^2\theta}a\cos\theta d\theta=
\displaystyle \int_{0}^{\pi/2} 4a^2sin^2\theta a \sqrt{1-sin^2\theta}a\cos\theta d\theta=
\displaystyle \int_{0}^{\pi/2} 4a^2sin^2\theta a cos\theta a\cos\theta d\theta=
\displaystyle 4a^4\int_{0}^{\pi/2} sin \theta cos^2 \theta d\theta=
U substitution
u=cos\theta
-du= sin\theta d\theta
\displaystyle 4a^4\int u^2 du=
When I put in the bounds it yields from 1 to 0. What did I do wrong
Last edited: