• Support PF! Buy your school textbooks, materials and every day products Here!

Trigonometric Substitution problem

  • Thread starter frosty8688
  • Start date
  • #1
126
0
1. [itex]∫\frac{\sqrt{x^{2}-4}}{x} dx[/itex], [itex]x=2secθ[/itex], [itex]dx=2secθtanθ dθ[/itex]



2. [itex]\sqrt{x^{2}-a^{2}}[/itex],[itex]sec^{2}θ-1=tan^{2}θ[/itex]



3. [itex]\sqrt{x^{2}-4}=\sqrt{4sec^{2}θ-4}=\sqrt{4(1+tan^{2}θ)-4}=\sqrt{4tan^{2}θ}=2\left|tanθ\right|=2tanθ[/itex];[itex]∫\frac{\sqrt{x^{2}-4}}{x}dx=∫\frac{2tanθ}{2secθ}dθ=\frac{ln\left|secθ\right|}{ln\left|secθ+tanθ\right|}+C=ln\left|secθ\right|-ln\left|secθ+tanθ\right|+C[/itex];[itex]∫\frac{\sqrt{x^{2}-4}}{x}dx=ln\left|\frac{x}{2}\right|-ln\left|\frac{x}{2}+\frac{\sqrt{x^{2}-4}}{2}\right|+C=ln\left|x\right|-ln\left|2\right|-ln\left|x+\sqrt{x^{2}-4}\right|+ln\left|2\right|+C[/itex]. Please tell me what I did wrong.
 

Answers and Replies

  • #2
SteamKing
Staff Emeritus
Science Advisor
Homework Helper
12,798
1,666
What happened to the substitution for dx in terms of dθ?
 
  • #3
126
0
I see what you mean. Ok, here is what I have after the dx substitution: [itex]\int\frac{\sqrt{x^{2}-4}}{x}dx = \int\frac{2tanθ}{2secθ}2secθtanθdθ = 2\int tan^{2}θdθ[/itex]
 
  • #4
126
0
Which is: [itex]2\int(sec^{2}θ-1)dθ = 2(tanθ-θ)+C[/itex]
 

Related Threads on Trigonometric Substitution problem

  • Last Post
Replies
6
Views
1K
  • Last Post
Replies
2
Views
1K
Replies
2
Views
510
Replies
1
Views
985
Replies
4
Views
2K
Replies
34
Views
3K
  • Last Post
Replies
9
Views
2K
  • Last Post
Replies
1
Views
960
  • Last Post
Replies
6
Views
1K
  • Last Post
Replies
4
Views
2K
Top