Trivial Question on Fourier Transforms

  • Thread starter Thread starter Void123
  • Start date Start date
  • Tags Tags
    Fourier
Void123
Messages
138
Reaction score
0

Homework Statement



If my f(x) = {f1, f2, f3}, where each function (f1 f2 f3) is within its own domain, and I wanted to find the transform g(k), then I would be adding up three different integrals over those different limits, correct?

Homework Equations


The Attempt at a Solution

 
Physics news on Phys.org
Yes.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top