Troubleshooting Centripetal Force Lab Calculations: What Went Wrong?

AI Thread Summary
The discussion revolves around troubleshooting calculations for a centripetal force lab where a rubber stopper is swung in a tube, with a hanging mass providing the centripetal force. The user reports that their calculated times for the lab trials are significantly higher than expected, ranging around 48.9 seconds compared to the 12-15 seconds observed in class. A key suggestion is to verify whether the masses m1 and m2 are correctly assigned, as reversing them could drastically alter the velocity and, consequently, the time calculations. Additional potential sources of error mentioned include friction, the mass of the string, and variations in the radius during motion. The user is exploring how changes in mass affect the time, indicating a need for clarity in their calculations.
Elbobo
Messages
145
Reaction score
0

Homework Statement


Since I ran out of time in class, I have to make up my own times for this lab using calculations.

The lab consists of our providing a little force by shaking this tube. Inside this tube is a string, and at one end of the string is attached a hanging mass, the other end a rubber stopper. Essentially, the hanging mass's weight is what provides the centripetal force of the rubber stopper.

However, my calculations for the time in seconds are waaay too high. I tried doing the same method for my other trials done in class and they were also far too high. I don't know what I'm doing wrong, because human error couldn't have possibly been that high all 10 trials in class.

m1 = 0.011 kg
m2 = 0.030 kg
r = 0.545 m
g = 9.81 m/s2

Homework Equations



d = r * 2 pi * 20 (we measured the time it took for 20 revolutions)
t = d / v
W = mg
Fc = (mv2) / r

The Attempt at a Solution


Since the force we provide with our arms shouldn't factor in too much, I did:
(m2v2) / r = m1g
v = 1.400 m/s

t = d / v
t = (2pi * 0.545 * 20) / 1.4
t = 48.915 s,
which varies WAY too much with the other trials (Each trial, a variable was altered a bit, such as the hanging mass or the radius, but this change only affected the time by 3 seconds or less).

The other trials were in the 12.0 - 15.0 s range.
What am I doing wrong?
 
Last edited:
Physics news on Phys.org
Check to see if you may have your m1 and m2 reversed in your formula. The stopper mass at the end of the string is what you are calling 'm2'. Is it?
 
Elbobo said:

Homework Statement


Since I ran out of time in class, I have to make up my own times for this lab using calculations.

The lab consists of our providing a little force by shaking this tube. Inside this tube is a string, and at one end of the string is attached a hanging mass, the other end a rubber stopper. Essentially, the hanging mass's weight is what provides the centripetal force of the rubber stopper.

However, my calculations for the time in seconds are waaay too high. I tried doing the same method for my other trials done in class and they were also far too high. I don't know what I'm doing wrong, because human error couldn't have possibly been that high all 10 trials in class.

m1 = 0.011 kg
m2 = 0.030 kg
r = 0.545 m
g = 9.81 m/s2

Homework Equations



d = r * 2 pi * 20 (we measured the time it took for 20 revolutions)
t = d / v
W = mg
Fc = (mv2) / r

The Attempt at a Solution


Since the force we provide with our arms shouldn't factor in too much, I did:
(m2v2) / r = m1g
v = 1.400 m/s

t = d / v
t = (2pi * 0.545 * 20) / 1.4
t = 48.915 s,
which varies WAY too much with the other trials (Each trial, a variable was altered a bit, such as the hanging mass or the radius, but this change only affected the time by 3 seconds or less).

The other trials were in the 12.0 - 15.0 s range.
What am I doing wrong?

For clarification, I read this as
m1 = hanging mass
and
m2 = "swinging mass" (rubber stopper)

Is that correct? If not and you reversed these, you will have a very big difference in your calculation of v.

The other potential sources of error that I see (if I am envisioning this correctly) may include friction of the string on the tube, the mass of the string and its effect on the moment of inertia/radius of gyration, and potential changes in the radius due to motion of your arm. I would assume all of these would be fairly small and shouldn't have too big an effect on the outcome.
 
I see where you guys might think I have reversed the masses, but no, Stovebolt is right with the labels.

EDIT:

Well since that didn't work for some reason, I resolved to simply find the factor by which it should change if I doubled the mass. I already had 2 trials that had the same conditions except the swinging mass was halved.

Doubling the swinging mass should change the time by a factor of (1/2)-(1/2), right?
 
Last edited:
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...

Similar threads

Back
Top