Susanne217
- 311
- 0
Homework Statement
Let \frac{1}{1-z+z^2} = \sum_{n=0}^{\infty} a_n \cdot z^n
where a_{1} = a_0 = 1 \Leftrightarrow a_{1}-a_{0} = 0 and a_2=0 and a_{n+3} + a_n = 0
The Attempt at a Solution
By the theorem of Identity
1 = 1 - z + z^2 \sum a_n \cdot z^n = a_0 + (a_{1}-a_{0})z + a_{2} \cdot z^2 + \sum_{n=3}^{\infty} a_n \cdot z^{n} - \sum_{n=1}^{\infty} a_{n} \cdot z^{n+1} + \sum_{n=0}^{\infty} a_n z^{n+2}
If I write out the first sum I get \sum_{n=3}^{\infty} a_n \cdot z^{n} = a_3 z^3 + a_{4}z^4 + \cdots
I write out a couple terms of the second sum - \sum_{n=1}^{\infty} a_{n} \cdot z^{n+1} = - a_1 \cdot z^{2} - a_2 \cdot z^{3} - \cdots
If I make the commen index n = 0
it looks like the index increase at n+3 and at a power of n+2 such that
a_0 + (a_{1}-a_{0})z + a_{2} \cdot z^2 +\sum_{n=3}^{\infty} + a_n \cdot z^{n} - \sum_{n=1}^{\infty} a_{n} \cdot z^{n+1} + \sum_{n=0}^{\infty} a_n z^{n+2} = \sum_{n=0}^{\infty} (a_{n+3} +a_n)z^{n+2}
How is this?
Sincerely
Susanne
Last edited: