Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Twin Paradox Explained

  1. Nov 16, 2011 #1
    Here is an explanations due to Daniel F. Styer, Prof Physics at Oberlin Daniel's original is at https://mail.google.com/mail/?ui=2&view=bsp&ver=ohhl4rw8mbn4".

    He uses general relativity and the equivalence principle. The equivalence principle is not entirely true -- it IS possible to distinguish between gravity and acceleration -- but Daniel says that it is good enough for this purpose, that no one has ever succeeded in measuring the difference. Consider an accelerating space ship and two clocks. Clock T is in the tail and clock N is in the nose. Each clock sends out a signal once a second. The situation is not symmetric. Clock N measures that clock T's signals come more than one second apart, and clock T measures clock N's signals as closer than a second apart. Both clocks agree that T is slower: no paradox.

    What's neat about this is that this difference depends on the distance between T and N. The further apart, the greater the differential in speed. This is what you need to get agreement with the special relativity equations: it depends directly on the distance between the clocks. When the two clocks are reunited the T clock will be behind the N clock by the appropriate amount.
     
    Last edited by a moderator: Apr 26, 2017
  2. jcsd
  3. Nov 16, 2011 #2

    Matterwave

    User Avatar
    Science Advisor
    Gold Member

    I am disturbed by the statement "The equivalence principle is not entirely true". I was under the impression that the equivalence principle is one of the best confirmed statements in physics - confirmed to ridiculously high precision (1 part in 10 to the 13 or something like that).
     
  4. Nov 16, 2011 #3
    What I meant was that it is possible to distinguish a gravitational field from an accelerative psuedoforce. I read now that the equivalence principle is the equivalence of inertial and gravitational masses. Sorry about that.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook