I How Does the Twin Paradox Illustrate Time Dilation in Special Relativity?

NoahsArk
Gold Member
Messages
258
Reaction score
24
Hello. Thank you to everyone who helped me with my previous post where I had general questions on special relativity. Several users suggested that I start by trying to understand the relativity of simultaneity which I did. Although I haven't mastered it, I understand it better now. Also, someone on another post recommended the book "Relativity Visualized" by Lewis Epstein which was also very helpful and uses R.O.S. as the foundation.

Regarding this post, I have been stuck on trying to understand the twin paradox. I've been trying to work up to an understanding of it. However, I've watched and read probably over ten different online lessons explaining the twin paradox, but I still don't understand it. Here are a few things that I'm trying to clarify:

1. In Epstein's book and in other lessons that I've seen, he uses a space time diagram to try and illustrate why one twin ages less than the other when they meet again. I'm not sure how to draw a space time diagram in here (I'd appreciate help on that as well), but the diagram is very simple so I'll just describe it: Earth twin has his X and Y coordinate system. He see's space twin get off into a rocket. On Earth twin's diagram, he will see space twin moving at some angle upwards and also to the right. That will be represented by a diagonal line moving in the positive X and Y directions. Then, on the return trip, the Earth twin will see the space twin moving in a diagonal line upwards and to the left. When the space twin returns to earth, the Earth twin will have aged more because he went straight through time up the Y axis, whereas space twin went in a bent line to the right and to the left back to the Y axis.

That all sounds logical, but the question is how would space twin's diagram of Earth twin's "journey" look like (since Earth twin is the one moving from space twin's perspective). It seems to me that it would be a mirror image of Earth twin's diagram. Space twin would see Earth twin first moving up to the left, and then, on the return trip, up and to the right. If that's the case they should be the same age when the meet again. If we drew side by side a space time diagram for each twin, how would those diagrams look compared to one another?

2. Can this all be explained with special relativity? If so, are there explanations that don't involve acceleration and the Doppler effect?

3. As a related question to question 1, I watched the minute physics video on the twin paradox:
Firstly, he says, as an answer to the asymmetry problem, that time rotates. I am very confused by what it means for time to rotate?? When he draws the diagram from the space twin's perspective, the lines are at a different angle then the lines from the Earth twin's perspective. Why is that? Also, he draws the diagram from the perspective of how the Earth twin perceives the time of the space twin, and then compares that to how the space twin views his own journey's time (proper time). Shouldn't we be comparing the Earth twin's perspective of space twin's time with space twin's perspective of Earth twin's time, and not with space twin's perspective of his own time?

Thanks
 
Physics news on Phys.org
First, I'd forget about that video and all like it. It's impossible to learn anything subtle from a video in the style of a corn-flake advert, with everything gabbled at break-neck speed.

Second, you can only really understand the twin paradox once you have nailed the basic concepts of SR. It's not the other way round: you can't (IMO) use the twin paradox to help learn the basic concepts of SR.

Third, if you can't understand the basic concepts of SR (spacetime diagrams, ROS, Doppler effect) from a formal text, then it's hard for anyone on here. Your question seems to me to reveal (I'm sorry to say) that you haven't really grasped the basics.

The key point you're missing is that the twin who accelerates is consantly changing their (inertial) reference frame (during the acceleration and deceleration phases), so they cannot use the same inertial reference frame/spacetime diagram throughout. The twin who stays at home can, of course, use the same inertial frame throughout.

One simple approach to the paradox is to trust the stay-at-home twin's calculations (you know you can trust them, because you've nailed the concepts of inertial reference frames and time dilation). And, you can simply say that you don't know how to do the calculations for the moving twin because of the periods of accelerating and decelerating reference frames.

It's nice, of course, to be able to analyse the problem from the traveling twin's perspective. But, logically, that isn't necessary. If you can prove it from the stay-at-home twin's perspective, you don't have to repeat the proof another way. One proof is enough.

However, ...

In my view, one simple way to understand things from the traveling twin's perspective is to analyse what they actually see (this is essentially just the Doppler effect calculated by hand, as it were). For example, if B moves at ##\frac{4}{5}c## for a distance of ##4## light years, hence ##5## years (in A's frame), then B sees only ##1## year pass on A's clock on the outward journey and ##9## years pass on A's clock on the return journey. And, because of length contraction, the journey time out and back for B is only 6 years in their own frame.

If your algebra and arithmetic are up to it, you can work all that out on a bit of paper for yourself. Or, you can trust the Doppler equations, which are effectively what you are verifying.

In any case, this verifies what you know from the analysis in A's frame: that 10 years have passed on A's clock and only 6 years on B's during the out and back journey that B made.
 
NoahsArk said:
That all sounds logical, but the question is how would space twin's diagram of Earth twin's "journey" look like (since Earth twin is the one moving from space twin's perspective).
The space twin cannot draw one Minkowski diagram of Earth twin's trip because the space twin is not inertial for the whole trip. He has to draw two separate diagrams, one covers the outbound trip until right before the turnaround, the second will cover the inbound trip right after the turnaround. But to figure out how to put the two together you'd need some math. Do you know how to use the Lorentz transformations? Try a numeric example.
 
PS perhaps the most fundamental asymmetry between A and B lies in the distance between the starting point and the turnaround point. A will measure the distance between these as ##4## light years throughout. Whereas, B will initially measure this distance as ##4## light years, but after his/her acceleration to ##\frac{4}{5}c## will measure the distance as only ##2.4## light years. When he/she stops at the turnaround point, the distance is once more ##4## light years and so on. Hence, there is no doubt that B is changing his/her IRF and A is not.

And, perhaps, that alone shows why the situation between A and B is not symmetrical and there is actually no paradox.
 
PeroK said:
The key point you're missing is that the twin who accelerates is consantly changing their (inertial) reference frame (during the acceleration and deceleration phases),
I think this is the point that the OP is alluding to that is unsatisfying within SR. Yes, the traveling twin accelerates because it's motion is referenced to the rest of the universe. But how does measuring velocities wrt the rest of the universe make the "stationary" twin's inertial reference frame better? Yes, the traveling twin can feel his acceleration and deceleration because his velocity is changing wrt the rest of the universe. But why does that happen? Einstein wrote about these type of questions as motivation for GR. I have seen a thread somewhere in this forum that discussed this in depth.
 
FactChecker said:
I think this is the point that the OP is alluding to that is unsatisfying within SR. Yes, the traveling twin accelerates because it's motion is referenced to the rest of the universe. But how does measuring velocities wrt the rest of the universe make the "stationary" twin's inertial reference frame better? Yes, the traveling twin can feel his acceleration and deceleration because his velocity is changing wrt the rest of the universe. But why does that happen? Einstein wrote about these type of questions as motivation for GR. I have seen a thread somewhere in this forum that discussed this in depth.

No need to look outside at the rest of the universe.
Suppose each ship has within it a ball sitting on a level frictionless table.
While the stay-at-home twin's ball will remain in place, the traveling twin's ball will not when that twin turns to return home.

In the most general version of this twin paradox, the point is that
elapsed wristwatch time between separation and reunion events depends on the worldline path between those events.
The inertial observer will log the longest elapsed time.
(The Euclidean analog of this is that the arc-length along a path joining two points is shortest for the straight-line path.)
 
  • Like
Likes m4r35n357
PeroK said:
For example, if B moves at ##\frac{4}{5}c## for a distance of ##4## light years, hence ##5## years (in A's frame), then B sees only ##1## year pass on A's clock on the outward journey and ##9## years pass on A's clock on the return journey. And, because of length contraction, the journey time out and back for B is only 6 years in their own frame.

When I worked out this example, at 4/5c, γ would be 1.667. So, if 5 years went by for A, 3 would go by for B. On the way back, I think, another 5 years would go by for A, and another 3 for B. That's all from A's perspective.

From B's perspective, if 3 years went by for him, then 1.8 years will have gone by for A during the outward journey if I did it right. On the way back, another 3 will have gone by for B, and he'll see another 1.8 pass for A. So, when they come back together (and I'm sure I'm wrong on this based on how it sounds!), A will think he's aged 10 years and that B has aged 6, and B will think that he's aged 6 years and that A has aged 2.6 years! When A looks in the mirror, 10 years have gone by, but when B looks at him, he's only aged 2.6 years. That doesn't make sense to me but when I do the calculations it's what I get.

How could B see 9 years pass on A's clock on the return journey when he only saw three years of his own time passing? This is the opposite effect of time dilation. Should he be seeing less time pass for A since A is moving relative to him? If the answer involves the fact that B is accelerating, I thought the twin paradox could be understood without taking the acceleration factor into account (e.g. if we assume the period of acceleration was very small). If I'm wrong, and we do need to understand the effects of acceleration on the problem (which would involve changing gamma factors during the trip), please let me know. Wouldn't that be getting into general relativity?

Vitro said:
The space twin cannot draw one Minkowski diagram of Earth twin's trip because the space twin is not inertial for the whole trip. He has to draw two separate diagrams, one covers the outbound trip until right before the turnaround, the second will cover the inbound trip right after the turnaround. But to figure out how to put the two together you'd need some math. Do you know how to use the Lorentz transformations? Try a numeric example.

But then how can the Earth twin draw one diagram? The space twin is accelerating away from him just like the Earth twin is accelerating away from the space twin?

robphy said:
Have you looked at some of the PhysicsForums Insights?

I just took a look. I think at my level it will take me time to understand. It uses hyperbolas which is complicated for me. Even the two dimensional graphs present me some problems! For example, in a stationary frame's coordinate system, the X and Y axis are at a 90 degree angles from one another like we usually see. If another frame is moving relative to the first coordinate system, its X and Y axis will be bent inward. Wont the person moving, however, see their X and Y axis the same way the person in the first frame saw his axis (i.e. at 90 degree angles from one another)? I'm assuming its the person in the stationary frame that sees the person in the moving frame as having tilted axis?

Epstein, for the first few chapters, helped a lot. I stopped understanding when he got into the twin paradox.
 
NoahsArk said:
I just took a look. I think at my level it will take me time to understand. It uses hyperbolas which is complicated for me. Even the two dimensional graphs present me some problems! For example, in a stationary frame's coordinate system, the X and Y axis are at a 90 degree angles from one another like we usually see. If another frame is moving relative to the first coordinate system, its X and Y axis will be bent inward. Wont the person moving, however, see their X and Y axis the same way the person in the first frame saw his axis (i.e. at 90 degree angles from one another)? I'm assuming its the person in the stationary frame that sees the person in the moving frame as having tilted axis?

Epstein, for the first few chapters, helped a lot. I stopped understanding when he got into the twin paradox.

The hyperbolas are there, just like circles are there in Euclidean geometry.
However, the insights I referred to don't make explicit use of the hyperbolas.
In my case, I have developed an alternate structure to encode the hyperbolas.
The result is an accurate, physically-motivated visualization of the time elapsed along a piecewise-inertial worldline
without explicitly using the Lorentz Transformation formulas.

In my opinion, 2D graphs are essential. (Doing geometry with just words is difficult.)

In fact, you can play with a GeoGebra file I created for a talk:
https://www.geogebra.org/m/HYD7hB9v#
material-3974473-thumb.png
 
  • #10
NoahsArk said:
How could B see 9 years pass on A's clock on the return journey when he only saw three years of his own time passing? This is the opposite effect of time dilation. Should he be seeing less time pass for A since A is moving relative to him? If the answer involves the fact that B is accelerating, I thought the twin paradox could be understood without taking the acceleration factor into account (e.g. if we assume the period of acceleration was very small).
It can be, and indeed that is by far the easiest way to understand it. Once you understand it under the assumption that the period of acceleration is very small (essentially, B's path in the space-time diagram is two straight diagonal lines forming a sharp angle at the turnaround point), you understand it. Including the time spent accelerating (so that B's path is a hairpin curve around the turnaround point) complicates the calculation without adding any new physical insight.

If you haven't seen http://math.ucr.edu/home/baez/physics/Relativity/SR/TwinParadox/twin_gap.html, take a look at it now. Pay particular attention to the "time gap" and "spacetime diagram" sections.

And here is a question/hint for you... B sees three years pass on his clock before he reaches the turnaround, so if we assume near-instantaneous acceleration, one nanosecond before the turnaround B's clock reads three years minus one nanosecond. One nanosecond after the turnaround, B's clock reads three years plus one nanosecond. Using the frame in which B is at rest, what does A's clock read at the same time that B's clock reads three years minus one nanosecond? Using the frame in which B is at rest, what does A's clock read at the same time that B's clock reads three years plus one nanosecond? Note that these are different frames because B's velocity relative to A is different in the two cases.

(And note also the appearance of the phrase "at the same time", which suggests that relativity of simultaneity is involved. It usually is).
If I'm wrong, and we do need to understand the effects of acceleration on the problem (which would involve changing gamma factors during the trip), please let me know. Wouldn't that be getting into general relativity?
You are not wrong, and no general relativity is involved.
 
  • #11
NoahsArk said:
But then how can the Earth twin draw one diagram? The space twin is accelerating away from him just like the Earth twin is accelerating away from the space twin?

I really don't know what it will take to make you understand that the situation is not symmetrical and only one twin is accelerating. Acceleration is absolute, not relative. The Earth twin remains in a single IRF throughout; the space twin does not.

Until you understand that, you will just keep repeating the same fallacy that each twin can measure the other's motion in the same way. And then patently there is no way out of the paradox.

How you measure things from the space twin's perspective is problematic. But you really must stop insisting that the space twin remains in a single IRF throughout.
 
  • #12
Whether yet another explanation will help, I'm not sure, but here's my take on how ROS (leading-clocks lag) allows you to analyse the motion from the space twin's perspective.

First, you have A & B at rest on Earth and C at rest a distance of 4 light years away at the turnaround point. Initially, A, B & C all share the same IRF.

But, after B has accelerated to ##\frac{4}{5}c##, B has changed his IRF and in B's reference frame things are no longer the same. A and B are still (approximately) colocated at the start and still at time ##t = 0## (approximately) in each of their reference frames. This is "when" B starts the journey, and in B's new IRF.

1) C is now only 2.4 light years away.

2) The time at C in the A-C IRF is not ##t=0##. From B's perspective, when he starts his journey, the time in the A-C frame at C is ##t_C = \frac{16}{5} = 3.2## years.

In other words, from B's perspective, the clocks at A and C are no longer synchronised. And the time at C (in the A-C IRF) has already advanced by 3.2 years. If you don't understand this, you need to go back and master ROS.

Now, B's journey takes 3 years in his IRF and the clocks at A and C advance only by 1.8 years according to B (normal time dilation). So, when he arrives at C (and before he slows down), the clocks at A and C read 1.8 and 5 years respectively.

If he slows down quickly, then his clock reads 3 years when he stops, C's clock reads 5 years. And now, because once again B has changed IRF's, he finds that A's clock also reads 5 years, as A, B and C once again share the same IRF.

Exactly the same thing happens on the way back, except the roles of A and C are reversed. So, when B arrives back at A and stops, he finds 6 years have elapsed by his clock and 10 years on the clocks at A and C.

You can also see from this that you don't need the return journey to resolve the paradox. By changing IRF's twice, B has experienced less time than A & C during the outward journey.

Loosely speaking, the effects of time dilation from B's perspective were outweighed by the effects of ROS. So, although A & C's clocks ticked slower throughout from B's perspective, there was the ROS over the distance between A and C to take into account, and when you account for this, you find that more time passed on A and C's clocks than B's during the journey. (This is all from B's perspective.)
 
  • Like
Likes sophiecentaur
  • #13
Nugatory said:
And note also the appearance of the phrase "at the same time", which suggests that relativity of simultaneity is involved. It usually is

PeroK said:
Loosely speaking, the effects of time dilation from B's perspective were outweighed by the effects of ROS.

This is actually starting to make sense! I'm going to need to think about it more over the next few days because it's still so strange. At the beginning, A, B, and C all saw their clocks at t = 0. Then, once B starts moving at .8c, C's clock all of a sudden jumps from t=0 to t=3.2 years! Can you please also post the general equation for calculating the lag between two clocks which are positioned along the direction of motion?
 
  • #14
NoahsArk said:
Then, once B starts moving at .8c, C's clock all of a sudden jumps from t=0 to t=3.2 years!
C's clock doesn't really jump. All that is happening is that when B starts moving B's definition of "at the same time" changes, and along with it his notion of what C's clock reads "at the same time" that B's clock reads some given value..
 
  • #15
NoahsArk said:
This is actually starting to make sense! I'm going to need to think about it more over the next few days because it's still so strange. At the beginning, A, B, and C all saw their clocks at t = 0. Then, once B starts moving at .8c, C's clock all of a sudden jumps from t=0 to t=3.2 years! Can you please also post the general equation for calculating the lag between two clocks which are positioned along the direction of motion?

The "leading clocks lag" rule means that (using this case as an example) as B travels from A to C at speed ##v##, clocks that are synchronised in the A-C frame are not synchronised in B's frame and:

##\Delta t = \frac{vD}{c^2}##

Where ##\Delta t## is the time difference and ##D## is the proper distance (i.e. the distance in the A-C frame) between the "synchronised" clocks.

In particular, if ##t=0## in the A-C frame when B leaves A, and ##t_b = 0## (in B's IRF) when B leaves A, then ##t = +\Delta t## at C when ##t_b = 0## (at C).

What this means is:

If B could carry out an experiment to determine what C's clock read "when" (according to B's IRF) he left A, he would find ##t_C = +3.2## years.

Whereas, A would conclude that when (according to A's IRF) B left him ##t_C = 0##

This is a key aspect of ROS and, as has been mentioned before, this perhaps the most difficult aspect of SR to grasp.

I'm sure a good textbook would explain this much better than I have in a few lines here!
 
  • #16
NoahsArk said:
Firstly, he says, as an answer to the asymmetry problem, that time rotates. I am very confused by what it means for time to rotate?

Time doesn't rotate. The time axis rotates as shown in the diagrams. The reason has to do with the way you draw lines of constant time, they take into account relativity of simultaneity. Two events that are simultaneous are connected by a line of constant time. But if you are moving relative to me, my line of constant time and your line of constant time are rotated relative to each other because events that are simultaneous to me are not simultaneous to you.
 
  • #17
PeroK said:
The "leading clocks lag" rule means that (using this case as an example) as B travels from A to C at speed vv, clocks that are synchronised in the A-C frame are not synchronised in B's frame and:

Δt=vDc2

Thank you.

PeroK said:
I'm sure a good textbook would explain this much better than I have in a few lines here!

Introducing C into the picture was very helpful.

Nugatory said:
C's clock doesn't really jump. All that is happening is that when B starts moving B's definition of "at the same time" changes, and along with it his notion of what C's clock reads "at the same time" that B's clock reads some given value.

Well the example got me thinking: Say A and C are two 30 year olds in their IFR, and they are standing the same distance apart like A and C in PeroK's example. When B is at rest relative to A and C, he will also see them as both being 30. Now, if B starts going at at a fast enough speed, and the time it takes him to reach that speed is near instantaneous, then it's possible that he'll see C as a 90 year old and A as still being 30. Also, if I understand it right, C himself would see himself as a 30 year old when B would see him as 90! Does that mean that if someone flew by me fast enough they'd see me as a 90 year old??

Mister T said:
Time doesn't rotate. The time axis rotates as shown in the diagrams. The reason has to do with the way you draw lines of constant time, they take into account relativity of simultaneity. Two events that are simultaneous are connected by a line of constant time. But if you are moving relative to me, my line of constant time and your line of constant time are rotated relative to each other because events that are simultaneous to me are not simultaneous to you.

Thank you for clarifying this. I am going to need to learn the rules for drawing the diagrams (e.g. what the relationship is between the speed of the moving frame and the angle that the axis shifts.
 
  • #18
NoahsArk said:
Well the example got me thinking: Say A and C are two 30 year olds in their IFR, and they are standing the same distance apart like A and C in PeroK's example. When B is at rest relative to A and C, he will also see them as both being 30. Now, if B starts going at at a fast enough speed, and the time it takes him to reach that speed is near instantaneous, then it's possible that he'll see C as a 90 year old and A as still being 30. Also, if I understand it right, C himself would see himself as a 30 year old when B would see him as 90! Does that mean that if someone flew by me fast enough they'd see me as a 90 year old??

You're still making two fundamental mistakes. The first is that these things are not what you "see", but the results of measurements. The second is that the lack of synchronicity is due to the distance between A and C: B cannot be in both places at the same time. So, B can never directly observe A (locally) and C (locally) at the same time.

The way I would think about this is to have a fourth person, D, at rest with respect to B. So that B and D share an IRF and D passes C "when" (in the B-D IRF) B passes A. Let's move away from the twin paradox for a moment and assume that B and D have established that they are at rest with respect to each other and (from their perspective) A and C are 2.4 light years apart and moving towards them at ##\frac{4}{5}c##.

Now, B records the time on A's clock when he passes A; and D records the time on C's clock when he passes C. Then, they communicate the results to each other.

B communicates: "I passed A at ##t_B = T## (say) and A's clock read ##t_A = 0##.

D communicates "I passed C at ##t_D = T## (this establishes that B was at A when D was at B - in the B-D frame) and C's clock read ##t_C = 3.2 years##

This constitutes a "measurement" in the B-D frame of the lack of sychronicity of the A-C clocks. Neither B nor D can do it easily by themselves, but between them they can carry out this measurement.

Meanwhile, A and C measure their clocks as synchronised in their frame and, in their IRF, B passing A and D passing B were events that were 3.2 years apart. In other words: simultaneity is relative.

I suggest you go back to your textbook and master ROS. I don't think one can "half" understand ROS: you either understand it completely or you don't!
 
  • #19
NoahsArk said:
Well the example got me thinking: Say A and C are two 30 year olds in their IFR, and they are standing the same distance apart like A and C in PeroK's example. When B is at rest relative to A and C, he will also see them as both being 30. Now, if B starts going at at a fast enough speed, and the time it takes him to reach that speed is near instantaneous, then it's possible that he'll see C as a 90 year old and A as still being 30.
Go back and read Einstein's train example showing the relativity of simultaneity again. Instead of the lightning strikes, we have passengers A and C celebrating their 30th birthdays at each end of the train, and B is the observer on the train, in the middle. B accelerates by jumping off the train and ending up at rest on the platform.

And then back to your spaceships...
We may say that the events "A celebrated his 30th birthday" and "C celebrated his 90th birthday" happened at the same time using the frame in which A and C are moving.

We also may say that the events "A celebrated his 30th birthday" and "C celebrated his 30th birthday" happened at the same time using the frame in which they are at rest.

Let's consider exactly what those statements mean. No matter where you are and how fast you are moving, you will eventually see all three birthday celebrations in your telescope. If your clock reads T when you see one of these celebrations and it happened at a distance Q light-years from you, you will say that the celebration happened at time T-Q; you're just correcting what you see for the light travel time.

Even observers at rest relative to A and C may see the two 30th birthday celebrations in their telescopes at different times, because they may be different distances away. If A and C are one light-year apart, someone 1000 light years away will see one celebration happening when his clock reads 1001 years and the other happening when his clock reads 1000 years. That doesn't mean that the two events happened at different times, it means they happened at the same time and the light took longer to cover the greater distance between the more distant celebration and the telescope.

However, no one who is moving relative to A and C will ever find that these two celebrations happened at the same time. As in the at-rest case, they will eventually see all three celebrations in their telescope, but when they allow for the light travel time as they calculate what their clock read at the same time that the celebration happened, they'll get different results for the two 30th birthdays.

Furthermore, if we choose B's post-acceleration speed properly, observers who are at rest relative to B after the acceleration will find that A's 30th birthday celebration and and C's 90th happened at the same time after they allow for the light travel time. It's a good exercise to construct such a situation. (Hint: A and C must be at least 60 light-years apart in their rest frame).
 
  • #20
PeroK said:
B communicates: "I passed A at tB=Tt_B = T (say) and A's clock read tA=0t_A = 0.

D communicates "I passed C at tD=Tt_D = T (this establishes that B was at A when D was at B - in the B-D frame) and C's clock read tC=3.2years

Nugatory said:
However, no one who is moving relative to A and C will ever find that these two celebrations happened at the same time. As in the at-rest case, they will eventually see all three celebrations in their telescope, but when they allow for the light travel time as they calculate what their clock read at the same time that the celebration happened, they'll get different results for the two 30th birthdays.

Since the two examples are similar, I'll combine them to see if I'm understanding R.O.S correctly.
1. There are two frames: A-C and B-D. In the A-C frame, D's clock is the lagging clock, and in the B-D frame, A's clock is the lagging one.
2. The proper length between B and D is less than the proper length between A and C. That must be true because in PeroK's example, according to the B-D frame, when the two frames past each other they were of equal length (A lined up with B and C lined up with D). Since B and D are measuring a contracted length of A-C and getting an = measure, A-C's proper length must be bigger.
3. If, in the A-C frame, A and C celebrate birthdays on the same day, then in the B-D frame C must be older. When I say "on the same day" I am taking into account the time it takes for light to travel.
4. In the B-D frame, there comes a point where the nose and tail end of the two frames line up (A with B and C with D). On a two by two checker board, A and B would be the bottom row and C and D would be in the top row. In the A-C frame, however, A and B will cross each other first, and then only later will C and D cross. That's because according to the A-C frame, B and D are compressed together, and it takes longer for D to get to C.
5. All four of them have cameras. A and C, who are the exact same age in their frame, decide that exactly when they turn 30, they will take pictures of themselves blowing out the candles on their cake. We don't need to worry about light travel time because they took the pictures up close. It just so happens that as A is blowing out the candles, B is passing by and appears in the photo. When C takes his photo, D hasn't passed him yet and doesn't appear in the photo. A and B get together and compare photos. A appears in his photo with B (who is also taking a picture of A as described below), and C appears in his photo alone.
6. B and D, whose clocks are synchronized in the B-D frame, agreed to take simultaneous photographs when B sees A blowing out the candles (they happen to know A's birthday is coming up and they know when that will be in their frame). They then get together and compare photos. B's photo will show pretty much the same thing (with differences only due to the angle the photo was shot from) that A's photo showed: a thirty year old A blowing out candles. D's photo will show C, but C will be older than 30. How much older depends on the velocity of the B-D frame in relation to the A-C frame.
Is any of this right so far?
7. Here is the most confusing part for me: Now say all for of them are in the same reference frame at rest with respect to each other. A and C are 29 and have their birthdays tomorrow. B and D, since they are both at rest with respect to A and C, measure A and C to be 29 also (after adjusting for light travel time). That same evening B and D suddenly start moving with respect to A and C at a speed close to the speed of light. The very next day, A and C will measure each other's age at thirty, but B and D will have measured A at 30, and C at 90. Is this what could happen if B and D went fast enough? If that's actually what could happen, then how can we reconcile that for B and D, C's clock, due to time dilation, is moving slower than their own, but yet, due to R.O.S, it's moving faster than their own?
 
  • #21
Most of what you say is correct, although some of it confuses me. Then, point 7 undoes much of the good work.

In 7, you've introduced a complexity without noticing. If B and D simultaneously accelerate in their reference frame, then they do not simultaneously acclelerate in the A-C frame. They begin to accelerate simultaneously in the A-C frame, but once B & D have a relative velocity wrt A & C, then the simultaneity is lost. A & C will measure B accelerate increasingly ahead of D (becauses D's clock gets increasingly behind B's in the A-C frame).

Part of the reason you missed this is that you are thinking in terms like: has a birthday the next day. The ROS means that phrases like that are universally meaningless. The next day in whose reference frame?

My advice is to put to one side all the everyday language and start thinking about SR in terms of events with time and space coordinates in each reference frame. That's dry and mathematical, of course. But, with everyday language there are too many pitfalls.

You have events and in each IRF an event has a time ##t## and a location ##x##. In another IRF, the same event has a time ##t'## and a location ##x'##. These are the coordinates of the event. You must specify these for each event, otherwise you are simply not being precise enough.
 
  • #22
PeroK, in your earlier example, when there was just A,B, and C in the picture, you said that if they are all stationary relative to each other, then all their clocks will be synchronized (at T=0). Then you said the instant that B reaches the speed of 4/5c relative to A and C, then B will measure C's clock at 3.2 years and A will still be at T=0 (if B's acceleration to 4/5c was instantaneous). That's what's so strange to me- that in one instant B's measure C's clock went from 0 to 3.2 years.

PeroK said:
Part of the reason you missed this is that you are thinking in terms like: has a birthday the next day. The ROS means that phrases like that are universally meaningless. The next day in whose reference frame?

Going back to the last example, if B is traveling at 4/5C, and if one day went by in the A/C frame, then just over a day and a half went by B's frame. Yet for B, a day and a half earlier he measured C to be 29 years old, and now he's measure him to be 90. This is also surprising for the same reason that it was surprising in your original example where C went from T= 0 to T=3.2 years in an instant for B. .

In your first example, where B measure C's clock at 3.2 years, I'm assuming it doesn't matter where B's position was relative to A and C when he reached the speed 4/5C. In your example he was positioned next to A, but even if he was positioned close to B, the instant he started moving at 4/5C he would measure C's clock at 3.2 years? Thanks
 
Last edited:
  • #23
NoahsArk said:
In your first example, where B measure C's clock at 3.2 years, I'm assuming it doesn't matter where B's position was relative to A and C when he reached the speed 4/5C. In your example he was positioned next to A, but even if he was positioned close to B, the instant he started moving at 4/5C he would measure C's clock at 3.2 years? Thanks

Your assumption is wrong (because you haven't taken the time to learn the "leading clocks lag" rule). This is my last attempt.

If you have a sequence of synchronised clocks at rest with respect to each other. Let's say there are 9 clocks, all 1 light-year apart. And you have an observer (B) moving at ##\frac{4}{5}c## with respect to this row of clocks, then in B's reference frame, the clocks will read:

-3.2 years, -2.4 years, -1.6 years, -0.8 years, 0 years, +0.8 years, +1.6 years, +2.4 years, +3.2 years

Assuming B is passing the middle clock. In other words, every clock in the "stationary" frame is at a different time, depending on how far it is from B. Clocks in front of B (in B's direction of motion) are ahead; clocks behind B are behind.

If B started at rest next to the middle clock and accelerated almost instantantaeously, then those are the times he would measure on the stationary clocks.

If B started next to the furthest clock on the right, then after the acceleration he would measure:

-6.4 years, -5.6 years, -4.8 years, -4.0 years, -3.2 years, -2.4 years, -1.6 years, -0.8 years, 0 years
 
  • #24
NoahsArk said:
Then you said the instant that B reaches the speed of 4/5c relative to A and C, then B will measure C's clock at 3.2 years and A will still be at T=0 (if B's acceleration to 4/5c was instantaneous). That's what's so strange to me- that in one instant B's measure C's clock went from 0 to 3.2 years.

That's a 3.2 year shift in the reckoning of simultaneous events, not a 3.2 year shift in a clock reading. Focus on the fact that C is distant from B. Awareness at B of events at C occurs much later. It's only after B accounts for this delay that he can reckon when the event occurred. He cannot be present for it.
 
  • #25
PeroK said:
Your assumption is wrong (because you haven't taken the time to learn the "leading clocks lag" rule).

I just ordered Introduction to Special Relativity by Helliwell- you recommended a book by him. I also ordered one by Smith. To be honest, when I look at the books online, I don't see much written about R.O.S. I got the Wheeler book which is good, but he gives R.O.S. one page of discussion. If you or anyone else knows of something specifically good for working on R.O.S., with problems, please let me know. Nugatory you initially emphasized that R.O.S. is key for understanding S.R., which got me thinking a lot more about it.

When we were talking about R.O.S. by itself, without changing IFRs, I got the basics- e.g. leading clocks lag, and there is relativity of simultaneity in the direction of motion, and that even though clocks may be out of sync for an observer moving relative to them, they will still tick at the same rate. I also understand that R.O.S. has nothing to do with when someone "sees" an event happening. Whenever I say that A "observes" or "measures" two events happening at the same time, I mean that A already adjusted for the time it took light to travel to his eyes before concluding that they happened at the same time.

Mister T said:
That's a 3.2 year shift in the reckoning of simultaneous events, not a 3.2 year shift in a clock reading.

That's the point that is throwing me off. If there was a 3.2 shift in the reckoning of simultaneous events, then there must have been a shift in clock reading. All of the 9 clocks in the above frame were in sync for the person stationary with respect to them. As soon as they went out of sync it means they had different readings for the observer that they went of sync for. If they still had the same readings then they wouldn't be out of sync (at least that's one of the things causing me trouble).

Here's one last example for now which hopefully pin points my misunderstanding better. I hope this also clarifies for me a little the relationship between time dilation and relativity of simultaneity. Take a very long rocket ship (one light year in length) at rest on Earth getting ready for take off. I'm standing outside the rocket waiting for it to leave. At both ends of the rocket, there are clocks- clock A is at the tail, and clock B is at the nose. I also have my own wrist watch. I observe the minute hand of all three clocks to strike 11:55am at the same time (the light from clock B will take longer to get to me then the light from the other two clocks, but I'll still conclude, after adjusting the time it took for clock B's light to travel to me, that all three clocks struck 11:55am at the same time). The clocks are all ticking harmoniously, and a minute later they all strike 11:56, then a minute later they all strike 11:57 etc. At exactly 12 noon, the rocket instantaneously starts flying at a speed of .8c. Now we have two different IFRs.

What happens now? As far as time dilation goes, in my IFR a minute later I'll observe the minute hand on my wrist watch strike 12:01pm. While a minute passed for me, I'll observe that about only 35 seconds have passed in the rocket frame.

But what about the effects of R.O.S? As a side note, one subtle point of confusion is the distinction between clocks on the rocket going out of sync vis a vis other clocks on the rocket (here A and B), and clocks on the rocket going out of sync with my wrist watch or with any other clock in another IFR. Are there separate rules I need to learn for that? Regarding the clocks in this example, at 12:01pm in my IFR, if I left out the effect of R.O.S., I'd assume that I'd observe both clock A and clock B would read 12:00 and 35 seconds. What would they actually read, though, when my watch reads 12:01? If I use the equation for R.O.S., I'd get a time difference of .8 between clocks A and B. Does that mean I'd observe clock A to read 12:00:35 when clock B to reads 12:00:28? Phrased more in R.O.S. terms, would I observe the events "A's minute hand strikes 12:00:35" and "B's minute hand strikes 12:00:28" to be simultaneous? If so, which of those two events is simultaneous with the event "my minute hand on my wrist watch strikes 12:01"?? Or are both events simultaneous with my minute hand striking 12:01? That gets more into the confusion about when two events in different frames are simultaneous. As another poster pointed out, the concepts of S.R. are very subtle. It took me a long time to even think of how to phrase my question and articulate what's confusing to me.

Again, thanks for the help.
 
  • #26
NoahsArk said:
Take a very long rocket ship (one light year in length) at rest on Earth getting ready for take off. I'm standing outside the rocket waiting for it to leave. At both ends of the rocket, there are clocks- clock A is at the tail, and clock B is at the nose. I also have my own wrist watch. I observe the minute hand of all three clocks to strike 11:55am at the same time (the light from clock B will take longer to get to me then the light from the other two clocks, but I'll still conclude, after adjusting the time it took for clock B's light to travel to me, that all three clocks struck 11:55am at the same time). The clocks are all ticking harmoniously, and a minute later they all strike 11:56, then a minute later they all strike 11:57 etc. At exactly 12 noon, the rocket instantaneously starts flying at a speed of .8c.

You'll be close enough to see the tail of the rocket lift off, but you'll still have almost a year of time to wait to verify that the clock at the nose read noon at take-off. By that time the rocket will have traveled 0.8 light years.

You seem to be ignoring the fact that you have to wait for the awareness of distant events.
 
  • #27
"You seem to be ignoring the fact that you have to wait for the awareness of distant events."

I did not ignore that. I specifically stated that we are adjusting for the time it take light to travel. My question relates to what the measurements will be when I get them.
 
  • #28
NoahsArk said:
At exactly 12 noon, the rocket instantaneously starts flying at a speed of .8c. Now we have two different IFRs.

1) There's no "now we have two" here - you ALWAYS had two different inertial frames (actually, you always have an unlimited number of inertial frames, but in this problem only two are being used). There is a frame (#1) in which the surface of the Earth is at rest, and there is a frame (#2) in which the surface of the Earth is receding at .8c. If you choose to describe the problem using the first frame, then the rocket starts at rest and accelerates to a speed of .8c. If you choose to describe the problem using the second frame, then the rocket was moving at speed -8c and accelerated until its speed was zero and it was at rest. Either way, both the rocket and the Earth are in both frames all along (as well in the frame in which an observer on Mars is at rest, and a frame in which a spaceship zooming towards the Earth at .99c is at rest, and a frame in which ...).

2) You have specified that at the same time that the liftoff was initiated all the clocks at various positions along the ship read 12:00 noon using frame #1's definition of "at the same time". However, because of relativity of simultaneity, the "this clock reads 12:00 noon" events for the various clocks along the length of the ship do not happen at the same time, nor at the same time that the liftoff was initiated, if you use frame #2 (or any other frame).

3) When you say "the rocket instantaneously starts flying at .8c" you are basically saying that all parts of the rocket start moving at the same time (and there is that phrase again!). If all parts of the rocket start moving at the same time using one frame (#1, the way you've set the problem up), then they do not start moving at the same time if you use any other other frame to assign time values to the "starts moving" events.

(You may think you can evade #3 because the rocket is a rigid object, so if one part of it moves all parts of it must move at the same time because that's what "rigid" means. In fact there are no perfectly rigid objects; when we say that something is "rigid" that's an approximation that only works when relativistic effects are not significant. You can no more make one end of a rod move at the same time that you push the other end than you can make a wave appear on the African coast at the same time that you disturb the water on a South American beach - you have to wait for the disturbance to travel the breadth of the ocean).
 
Last edited:
  • Like
Likes PeroK
  • #29
@NoahsArk, take a look at your watch right now. Is the reading advancing steadily one second at a time? Why isn't it shifting back and forth randomly since there are countless "observers" in the Universe changing speed relative to it? In fact shouldn't it show many different readings all at once, a different one for each observer? But it doesn't do that, it only has one reading advancing one second at a time, regardless of any observer. So a clock's reading doesn't change as a result of an observer changing speed.

What if the clock itself chages speed? Well, its rate will change but the instantaneous reading won't; if it undergoes a boost (instantaneous change from one constant speed to another) it will show the same reading right before the boost and right after.

Let's take three clocks, all at rest and synchronized, one at x = 0, a second one at x = -1 (light-year) and the third at x = 1.

You are at rest next to the clock at x = 0, and when it shows t = 0 you boost yourself to v = 0.6c towards the clock at x = 1. We have established that from the three clocks' point of view the fact that you changed your speed has no effect on their readings, they will all still show t = 0 right after your boost. From your perspective, after the boost, you'll ask what do the three clocks read "now"? The clock right next to you will still read 0 but the clock at x = 1 (per the previous IFR) now reads 0.6 (years) and the one at x = -1 now reads -0.6. But that's not because the two distant clocks jumped forward/backward in time or their reading shifted, they always ticked one second every second their entire existence, no jumps at all, it's your notion of "now" that changed and those are the normal readings on the clocks when observed at the same time in this other IFR.

Let's reset, you are again at rest next to the middle clock but this time we make the three clocks undergo a boost to v = 0.6c at the same time, when all read t = 0, while you remain stationary. In your IFR, right after the boost, they all still read t = 0; they are still synchronized in your IFR which means they are not synchronized in their new rest frame. Taking the clock at x = 0 as the reference it means the other two clocks are showing the wrong time in their new IFR, so they should be pre-programmed to adjust their readings immediately after the boost, the clock at x = 1 has to set itself to -0.75 and the one at x = -1 must set its reading to 0.75.

If you found that ROS doesn't get a lot of indepth treatment I would think it's because there's really not that much to say about it. All you need to remember is that two space-like separated events must happen simultaneously in one IFR and only that IFR. Beyond that just identify any relevant events and frames and apply the Lorentz transformations.
 
  • #30
@NoahsArk. My belated welcome to PF Forum
If I may share my experience with understanding SR. You have to solved it yourself.
For solving Twins Paradox, you only need very basic Lorentz Factor and high school math.
The very basic rules to solve Twins Paradox are these:
1. The parties should travel in constant speed, no acceleration involved. After you have mastered Twins Paradox, then you can study SR with acceleration involved.
2. Rest and travel are abstract things in SR. A "rest" observer will see that the "traveling observer" is (of course traveling), and the "traveling observer" will see that it is the rest observer who is traveling.
3. A "rest" observer will see the "traveling" observer's clock dilated.
4. Rule 3 will also appliy to the "traveling observer". The traveling observer will see that the "rest" observer's clock dilated.
5. Ignore Time dilation for this problem, first. We only use Doppler effect. But later to understand Twins Paradox, time dilations play a very important role.

Okay..., so let's begin our thought experiment. No Time dilation for now.
Use doppler's effect or your logic.
Two observers A and B
A stays and B moves 0.6c to the west. And in B frame, it's B who stays and A travels 0.6c to the east.
The distance between B and A2 is 225 millions KM (in A frame).
Picture01.jpg

A1 keeps sending signal every 1 milli second (in A Frame) to B and B keeps sending signal every 1 milli second (in B Frame) to A1.
When B reach A2 (both frame agree with this event) B turns around and heads back to A1 at 0.6c.

So the question is this:
1. Before B reaches A2 how many ticks per second (ignore time dilation, ignore time dilation) that B receives from A1 and how many ticks per second that A1 receives?
2. The moment B reaches A2 and turns back to A1, how many ticks per second that B receives and so does A1? (ignore time dilation, ignore time dilation)
You might want to solve this yourself, to under Twins Paradox I think.
Then we analyze further the Doppler effect, then the combination with time dilation.
 
  • #31
Nugatory said:
When you say "the rocket instantaneously starts flying at .8c" you are basically saying that all parts of the rocket start moving at the same time

That's something I didn't consider, and that fact, that the bottom of the rocket starts moving first, makes my example more complicated:)

Vitro said:
But that's not because the two distant clocks jumped forward/backward in time or their reading shifted, they always ticked one second every second their entire existence, no jumps at all, it's your notion of "now" that changed

That's the subtle point that I'm trying to wrap my head around, that my notion of "now" has changed, but so far have not been able to do. I have the notion (which is false based on the responses here) that when I read X = .6, after it earlier read X=1, that I've traveled into the past of that clock! That probably sounds silly, but its how I'm seeing it. Likewise, when the clock went from -1 to -.6, I feel like I've jumped into that clock's future.

With time dilation, I can at least kind of see that the clocks in the other IFR are just running slower relative to mine, and it doesn't seem as far fetched as what's happening in the scenarios above.

Stephanus in your example it seems like both A and B will have received the same number of signals. They both moved the same distance relative to each other.
 
  • #32
NoahsArk said:
With time dilation, I can at least kind of see that the clocks in the other IFR are just running slower relative to mine, and it doesn't seem as far fetched as what's happening in the scenarios above.
Even though your clock is also running slower than the clock in the other frame? That's a question, not an argument, but as I've pointed out above... Time dilation is derived from relativity of simultaneity, so it's hard to see how you can accept time dilation yet find relativity of simultaneity more far-fetched.
 
  • #33
Nugatory said:
Even though your clock is also running slower than the clock in the other frame? That's a question, not an argument, but as I've pointed out above... Time dilation is derived from relativity of simultaneity, so it's hard to see how you can accept time dilation yet find relativity of simultaneity more far-fetched.

Well, strictly speaking, it's the symmetry of time dilation that requires relativity of simultaneity for it to make sense.

It's very easy to start with the derivation of time dilation (using the light clock) and not address the issue of relativity of simultaneity until later. This is of course a mistake, because it leaves the symmetry of time dilation either ignored or a mystery to be solved later.
 
  • #34
Nugatory said:
Even though your clock is also running slower than the clock in the other frame? That's a question, not an argument, but as I've pointed out above... Time dilation is derived from relativity of simultaneity, so it's hard to see how you can accept time dilation yet find relativity of simultaneity more far-fetched.

Time dilation at least makes visual sense for me- yes, even though my clock is also running slower in the other frame. A helpful comparison for me from the "Relativity Visualized" book was the comparison to perspective in art, or how I see someone standing far away to be shorter, but they also see me to be shorter.

Relativity of simultaneity makes visual sense too, and the example you used with the two painters and the brushes in the earlier post was helpful. Its when someone is in one frame and has one view about the simultaneity (or lack thereof), between two events, and then switches frames and has another view about the simultaneity of the events that is hard to accept. If events A and B happened at the same time in my frame, its hard to accept then when I switch frames I'll conclude they happened at different times.
 
  • #35
NoahsArk said:
That's the subtle point that I'm trying to wrap my head around, that my notion of "now" has changed, but so far have not been able to do.
Changing of "now" is just an inevitable consequence of the concept of simultaneity changing with velocity (boost). Are you familiar with the Andromeda Paradox? That is about as clear an explanation as I can find ATM.

It is what it is, and doesn't necessarily describe any sort of "reality". Think of it as accounting if that helps, and just accept it ;)
 
  • #36
NoahsArk said:
That's the subtle point that I'm trying to wrap my head around, that my notion of "now" has changed, but so far have not been able to do.

I know that you think you've properly accounted for the delays due to the travel of light signals, but in fact you have only partially done so. Yes, you accept the fact that the delay exists, and that it has to be accounted for when an observer makes a claim as to when a distant event must have occurred, but you are ignoring the effect it has on simultaneity. It is the delay due to the transmission of information that accounts for the fact that the shift in the notion of a simultaneous distant event is unlike the shift in clock readings between distant events.

Think about the version of the twin paradox solution where at the turn-around point the traveling twin jumps from an outbound ship to an inbound ship. He makes his jump when the two ships pass each other. During that jump there's a shift in what he considers to be simultaneous events for his stay-at-home twin, but it's not a leap in the staying twin's clock reading.

Let's say the staying twin watches three television shows while his twin is traveling. Starting at 12:00 noon he watches the first three episodes of "Fun with Flags". Each lasts for 30 minutes. When he gets to the end of the first episode his clock reads 12:30. The traveling twin makes his leap when, according to him, it's 12:30 back at home. But when he lands on the inbound ship he reckons it's 1:00 at home, and his twin has finished watching the second episode. So what happened during that second episode? Did the staying twin's clock suddenly jump from 12:30 to 1:00, or did he spend a half hour watching the second episode? Of course he spent a half hour watching it. There was no sudden leap of 30 minutes according to the traveling twin, either. It's just that after allowing for the travel time of light signals, a person in the outbound ship reckons it's 12:30 when he passes the inbound ship, but a person in the inbound ship reckons it's 1:00 at home when he passes the outbound ship.
 
  • #37
Mister T said:
Well, strictly speaking, it's the symmetry of time dilation that requires relativity of simultaneity for it to make sense.

Time dilation makes sense to me w/o relativity of simultaneity. The way I think of it is that time dilation is due to the way velocities add: anything that's moving on a train will have a certain speed with respect to people on the train, but people on the ground will measure that same speed to be less. If I throw a ball on a train and I measure the ball moving at 5 miles an hour w respect to me, someone on the ground will view it as moving something less than 5mph with respect to me.

I do see, though, how relativity is causing length contraction- i.e. to measure something both places have to be at a certain point at the same time. I also see how that's related to time dilation. E.g. I'll measure the time it takes the front of a moving train to cross the bridge I'm standing on to be more than the time someone on the train will measure because, for the person on the train, the bridge is smaller. So, I can see how time dilation, length contraction, and R.O.S are related. But, with respect to time dilation, for me the rules of addition velocity are enough to explain it (unless that's a misconception).

m4r35n357 said:
Changing of "now" is just an inevitable consequence of the concept of simultaneity changing with velocity (boost). Are you familiar with the Andromeda Paradox? That is about as clear an explanation as I can find ATM.

I've heard of it but don't know what it says. I will look into it:) Thanks for the tip.
 
  • #38
NoahsArk said:
That's the subtle point that I'm trying to wrap my head around, that my notion of "now" has changed, but so far have not been able to do.
From my Insight,
featuredImage-ClockEffect-300x300.png

the notion of "now" according to an observer
is encoded by the line joining his or her "half-ticks" (reflections at that observer's light-clock mirrors [whose worldlines are not shown]).
[In my terminology, that line is along the diagonal of the "light-clock diamond".]
So, when the observer changes velocity, that sense of now--extended to events off his or her worldline--changes.

That diagonal of the "light-clock diamond" is actually tangent to a hyperbola, which defines what "perpendicular to the worldline" means in Minkowski spacetime.
Here is version 0.5 of a geogebra visualization:
Light Clock Diamond (robphy) - v0.5
https://www.geogebra.org/m/Jq4jDMRW
https://www.geogebra.org/files/00/03/71/96/material-3719659-thumb.png
 
  • #39
Mister T said:
When he gets to the end of the first episode his clock reads 12:30. The traveling twin makes his leap when, according to him, it's 12:30 back at home. But when he lands on the inbound ship he reckons it's 1:00 at home, and his twin has finished watching the second episode. So what happened during that second episode? Did the staying twin's clock suddenly jump from 12:30 to 1:00, or did he spend a half hour watching the second episode? Of course he spent a half hour watching it. There was no sudden leap of 30 minutes according to the traveling twin, either. It's just that after allowing for the travel time of light signals, a person in the outbound ship reckons it's 12:30 when he passes the inbound ship, but a person in the inbound ship reckons it's 1:00 at home when he passes the outbound ship.

Hmmm. Well that raises some questions.

Mister T said:
It's just that after allowing for the travel time of light signals, a person in the outbound ship reckons it's 12:30 when he passes the inbound ship, but a person in the inbound ship reckons it's 1:00 at home when he passes the outbound ship.

Traveling twin when he passes the outbound ship is the same distance from the staying twin as the person on the inbound ship is from the staying twin. So, it takes light the same amount of time to travel from the staying twin to both ships. Correct me if I'm wrong, but you're not saying that if it's 1:00 at home according to the inbound ship, but 12:30 at home according to the outbound ship, that the outbound ship is closer to home?

Mister T said:
The traveling twin makes his leap when, according to him, it's 12:30 back at home. But when he lands on the inbound ship he reckons it's 1:00 at home, and his twin has finished watching the second episode. So what happened during that second episode? Did the staying twin's clock suddenly jump from 12:30 to 1:00, or did he spend a half hour watching the second episode? Of course he spent a half hour watching it. There was no sudden leap of 30 minutes according to the traveling twin, either.

For me to understand this portion better, let's say that the staying twin, instead of being home on earth, is home on some rectangular shaped planet, if one existed, that doesn't spin. The traveling twin while going outbound would observe things on opposite ends of the rectangle happening in the opposite order from the person coming inbound if I'm not mistaken? So, if the staying twin were watching the episodes on the end of the planet that is farthest from the traveling twin, the traveling twin would observe events happening on his brothers side of the planet after events that happened on the other side, and the person coming inbound would see the opposite. Does this have something to do with why the outbound twin observes it to be 12:30 (on the part of the planet where the staying twin is) when the person going inbound observes it to be 1?

Robphy, are the half ticks the blue rectangles?
 
  • #40
NoahsArk said:
Robphy, are the half ticks the blue rectangles?
The blue rectangles ("clock diamonds") are Bob's ticks as traced out by his light clock.
From O to Q to Z, Bob logged 8 ticks.

His half-ticks are the events halfway along one tick, where the light rays he emitted would reflect off his mirrors. They are the two corners of the clock diamond not on Bob's worldline. To Bob, those events are simultaneous.

As long as Bob maintains his velocity, these lines of simultaneity are parallel to each other ( and Minkowski-perpendicular to his worldline). Try drawing a line parallel to one of these line through Q (the turn around event)... extended over to Alice's worldline.

When he changes velocity, the family of these lines change direction. Through Q draw a parallel to the new family of lines.
 
  • #41
I think the key to Twins Paradox is asymmetry.
If a rocket leaves the earth, so the Earth and the rocket both observers the other clock is slow. But..., WHEN the rocket reaches its destination, say 100 light years away and turns back. There's no way for the Earth to "know" that the rocket has already turned back. Earth has to wait 100 years, but that's not the case with the rocket. The rocket "knows" once it turns back.
And the asymmetry of doppler effect and time dilation can cause the Twins Paradox.
 
Last edited:
  • Like
Likes Dale
  • #42
NoahsArk said:
Correct me if I'm wrong, but you're not saying that if it's 1:00 at home according to the inbound ship, but 12:30 at home according to the outbound ship, that the outbound ship is closer to home?

You are not wrong. They are the same distance from home when they pass each other. They share the same location, so they are the same distance from home, or any other location you happen to choose! Clock readings have no effect on the validity of these statements about distances.

The traveling twin while going outbound would observe things on opposite ends of the rectangle happening in the opposite order from the person coming inbound if I'm not mistaken?

Let's say there are two televisions. One on the near side and one on the far side. Moreover, let the transmitter be equidistant from them, so that in their rest frame the episodes of "Fun with Flags" are appearing simultaneously.

In that case, what you say is true.

So, if the staying twin were watching the episodes on the end of the planet that is farthest from the traveling twin, the traveling twin would observe events happening on his brothers side of the planet after events that happened on the other side, and the person coming inbound would see the opposite. Does this have something to do with why the outbound twin observes it to be 12:30 (on the part of the planet where the staying twin is) when the person going inbound observes it to be 1?

If the events are things happening on the televisions, then yes. In other words, people on the inbound ship will reckon that the episodes are appearing on the far side first. But people on the outbound ship will reckon that episodes are appearing first on the near side.

Does this have something to do with why the outbound twin observes it to be 12:30 (on the part of the planet where the staying twin is) when the person going inbound observes it to be 1?

Depends on what you mean. Certainly both are examples of the same phenomenon. Events that are separated along the line of relative motion and are simultaneous in one frame are not simultaneous in the other. Moreover, the order in which the events occur can be reversed for frames that move in opposite directions (for events like these that have spacelike separation).
 
  • #43
Mister T said:
When he gets to the end of the first episode his clock reads 12:30. The traveling twin makes his leap when, according to him, it's 12:30 back at home. But when he lands on the inbound ship he reckons it's 1:00 at home

I've been thinking about this. So, from the staying twins perspective, as he just begins watching the 1:00 episode, could he rightly say "for my brother whose traveling in space away from me, and for everyone in his ship, to them this moment that's happening for me right now hasn't happened for them yet. For them I'm still watching the earlier episode. Also, to people who are right now coming in a ship towards me, this moment already happened?

Mister T said:
a person in the outbound ship reckons it's 12:30 when he passes the inbound ship, but a person in the inbound ship reckons it's 1:00 at home when he passes the outbound ship

That leads to a related question: From the staying twins perspective, at the moment the inbound and outbound ship pass each other, what time is it for him? Is it 12:30, 1, or some other time? Just like there is a proper time and a proper length, does it make sense to ask what the proper "now" is?
 
  • #44
NoahsArk said:
So, from the staying twins perspective, as he just begins watching the 1:00 episode, could he rightly say "for my brother whose traveling in space away from me, and for everyone in his ship, to them this moment that's happening for me right now hasn't happened for them yet. For them I'm still watching the earlier episode. Also, to people who are right now coming in a ship towards me, this moment already happened?

Yes and no. He can say it, but only because it makes no difference physically. What relativity of simultaneity is really telling you is that simultaneity--the concept of what is happening "now" at some place distant from you--is not a physical thing; it's just an artifact of how you choose coordinates.
 
  • Like
Likes Dale and Stephanus
  • #45
PeterDonis said:
Yes and no...
Now and again, I've been seeing the concept of "now" in SR.
NoahsArk said:
I've been thinking about this. So, from the staying twins perspective, as he just begins watching the 1:00 episode, could he rightly say "for my brother whose traveling in space away from me, and for everyone in his ship, to them this moment that's happening for me right now hasn't happened for them yet. For them I'm still watching the earlier episode. Also, to people who are right now coming in a ship towards me, this moment already happened?
The concept of "now" for the staying twin and for the traveling twin is difference.
Let's say S1: is the staying twin
T1: is the traveling twin.
I think to understand the concept of "now" can be described as this.
T1 has a friend, T2 who is comoving with T1, that is at the same speed and at the same direction and behind T2.
T2 who happens to meet S1 at the same location at S1) when S1 is watching episode 1:00, T2 photographed what S1 is watching. And write the time stamp at the photograph. Later on..., T2 informs T1 what T2 sees, of course this event takes some time for the light from T2 to reach T1, plus if T2 doesn't directly send the photograph. He drinks coffe or anything.
Now T1 can conclude that, WHEN S1 is watching the episode 1:00, T1's clock read something... That is "now" for T1.
Of course T1 also "knows" what is T2 distance from T1. T2 could have sent its own clock reading, too. And of course because both (T1 and T2) are comoving, they can synchronize their clock.

Of course S1 can also have a companion (S2) who happens to meet T1 WHEN S1 is watching episode 1:00
Okay, let's forget about the episode, I'm confused.
Let's just say that S1 and S2 are synchronizing their clock.
And T1 and T2 are synchronizing their clock, separately from the S group.
S1 and S2 clocks match.
T1 and T2 clocks match.
It doesn't make any sense for S group (S1 and S2) to match their clocks with T group.
Okay, now let's do this experiment again.

Of course S1 can also have a companion (S2) who happens to meet T1 WHEN S group's clock are at 1:00
T1 travels at the direction from S1 to S2
And also at the same time with respect to S group, that is when S1 clocks read 1:00. S1 meets T1's friend, let's call him T3 and S1 photographed T3 clock.
S2 photographed T1 clock and sometimes later S2 informs S1 what S2 sees.
Now S1 compared both photographs (T1 and T3).
T1 clock might shows 03:00 (S group and T group clock might not match but that's ok, because T group are moving with respect to S group)
Guess what T3 clock in the photograph? It might shows 03:30. A time after T1 time! So, S1 actually is seeing T1's future!
And guess what. What is actually happening at T group?
T1 has a friend T2 who happens to meet S1 when T1 meets S2 at T group frame. T2 photographed S1 time and sends it to T1.
So later on when T1 compares both photographs..., the clock reading at S1 might show 00:30, a time before S2 time. T2 is seeing S2 past!

Drawing01.jpg
I think the concept of "now" can only be applied to comoving parties. And for moving parties, the concept of "now" is rather vague.
And I might quote.
PeterDonis said:
...-the concept of what is happening "now" at some place distant from you--is not a physical thing; it's just an artifact of how you choose coordinates.
 
  • #46
NoahsArk said:
Just like there is a proper time and a proper length, does it make sense to ask what the proper "now" is?
You'd have to define what you mean by "proper now" before we could decide whether it made sense. What, exactly, do you mean when you say that something is happening "now"? What do all the events that occur "now" have in common that makes you say they're the ones that are happening now?

But for any definition that matches what we mean by "now" in our ordinary day-to-day non-relativistic understanding of time, the answer is going to be that it makes no sense to talk about it, or it has no physical significance.
 
  • Like
Likes PeterDonis
  • #47
NoahsArk said:
I've been thinking about this. So, from the staying twins perspective, as he just begins watching the 1:00 episode, could he rightly say "for my brother whose traveling in space away from me, and for everyone in his ship, to them this moment that's happening for me right now hasn't happened for them yet. For them I'm still watching the earlier episode. Also, to people who are right now coming in a ship towards me, this moment already happened?

Yes. (Adding the caveat that we're using the Einstein convention for simultaneity, which is just a convention. As PeterDonis points out, it's not physical.)

That leads to a related question: From the staying twins perspective, at the moment the inbound and outbound ship pass each other, what time is it for him? Is it 12:30, 1, or some other time? Just like there is a proper time and a proper length, does it make sense to ask what the proper "now" is?

If I think about proper time as being "my time" and proper length as being "my length" in the sense that it's the length I measure, then I don't really understand why you couldn't refer to it as "my now" (given the above-mentioned caveat).

An interesting observation is that in Einstein's native German, proper time is called eigenzeit which I understand is translated literally as "my time".
 
  • #48
Mister T said:
Yes. (Adding the caveat that we're using the Einstein convention for simultaneity, which is just a convention. As PeterDonis points out, it's not physical.)
If I think about proper time as being "my time" and proper length as being "my length" in the sense that it's the length I measure, then I don't really understand why you couldn't refer to it as "my now" (given the above-mentioned caveat).

An interesting observation is that in Einstein's native German, proper time is called eigenzeit which I understand is translated literally as "my time".
Even in SR, for non-inertial motions, there are different, equally plausible notions of "my now". One would be to use the literal Einstein synchronization from (e.g.) a rocket, sending and receive radar signals and treating the reflection event as simultaneous with half way between the sending and reception events on my rocket. Another would be to use the 'now' of a momentarily comoving inertial frame (in some sense, adopting the synchronization of an observer following a different world line that is momentarily at rest with respect to my rocket). Which do you pick as "my now"? They are completely different, and both plausible. There is no such ambiguity for proper time. There is, actually, a messy set of issues for proper length, in that only very specialized motions admit a well defined notion of rigidity which is needed for a definition of proper length.
 
  • Like
Likes Herman Trivilino
  • #49
Thank you again for the great responses.

Nugatory said:
You'd have to define what you mean by "proper now" before we could decide whether it made sense.

PeterDonis said:
the concept of what is happening "now" at some place distant from you--is not a physical thing; it's just an artifact of how you choose coordinates

Defining "now" is not easy. The way I would try to do it is: "the set of all events which, for a particular observer, are happening at the same time". If someone made a collage of their "now", from their frame of reference, it would contain photos of all the events happening at that moment for them (assuming they could get instant access to those photos). E.g. it would have photos related to the election, and would have pictures of everything that anyone happened to be doing at that moment, along with things going on elsewhere in the universe. Am I correct to say that every person who is in the same inertial frame would have an identical collage, and no two observers who are in motion relative to one another would have the same collage?

Something interesting would happen, I think, when two people in different inertial frames came together with their collages. Say, for example, when traveling twin is born, he takes off at a speed such that when staying twin is 30 in his own reference frame he observes traveling twin to have aged only 15 years. When staying twin is 30, he has a collage made of his "now". One of the photographs of his collage will include his brother being 15 and he being 30. If at that same moment the traveling twin had a collage done, the traveling twin's collage would include a photograph of the staying twin being only 7.5 years old, and himself being 15! If they some how managed to get back together and compare collages, the staying twin could say "this, as my collage shows, is how things in the world were when you were 15, but the traveling twin would say "no, things were the way that my collage shows".

Is it true, though, that there would be one thing in common between the two collages: the photo of the traveling twin being 15? That seems like it leads to a paradox, though: why is it the 15 year old traveling twin that appears in both collages and not the 30 year old staying twin? According to the traveling twin, when he is 60, his brother is 30. So, why when they get back together shouldn't the staying twin's collage have a photograph of him being 30 and his brother 15, while the traveling twin has a collage of himself being 60 and the staying twin being 30? (After writing the rest of this post and coming back to think about it, I think the answer might be that traveling twin wouldn't even agree with the staying twin that the two collages were made at the same time).

Stephanus said:
Guess what T3 clock in the photograph? It might shows 03:30. A time after T1 time! So, S1 actually is seeing T1's future!

Stephanus said:
T2 is seeing S2 past!

Is it also true that T1 is seeing S2's future?
 
  • #50
NoahsArk said:
Defining "now" is not easy.
On the contrary, it is quite easy. There are two good definitions, and they are equivalent.
1) All events that have the same ##t## coordinate as the event corresponding to my current position are happening now; none others are.
2) All events that have an ##x## coordinate that differs from my ##x## coordinate by a quantity ##\Delta{x}##, and for which a light signal emitted at that event will reach me at an event that is separated from the event that is my current position by an amount ##\Delta{t}##, and ##\Delta{t}=\Delta{x}## are happening now; none others are.

#2 is actually a specific procedure (the only sensible one in flat spacetime, and equivalent to Einstein clock synchronization) for assigning the ##t## coordinates that we'd use in #1.

NoahsArk said:
(assuming they could get instant access to those photos)
But they can't - it's physically impossible. Either you're ignoring the need for light to travel from the event to the camera, or you're placing the camera close to the remote event and we need to carry the film to the observer. Either way, the access is not "instant".

In fact, assuming the possibility of instant access is just overlooking (again!) the relativity of simultaneity. To say that I have instant access to a snapshot of an event at a distant location is equivalent to saying that I have access to the snapshot at the same time that the event happens.
 
Last edited:
  • Like
Likes Stephanus

Similar threads

Back
Top