Time Travel: Calculating Velocity for 10 Year Trip

AI Thread Summary
The discussion focuses on calculating the velocity for a hypothetical 10-year time travel scenario, emphasizing the importance of selecting an appropriate reference frame for accurate calculations. It highlights that when all velocities are measured from the same frame of reference, the velocity addition formula is unnecessary. The conversation also touches on the implications of time dilation and how time is perceived differently depending on the observer's frame. Clarification is needed regarding the definition of "Earth years" in the context of the problem. Overall, understanding the reference frame is crucial for solving the time travel velocity calculations accurately.
jselms99
Messages
4
Reaction score
1
Homework Statement
One twin leaves earth on his 25th birthday traveling at velocity .87c. After traveling away from earth for 5 Earth-years, he abruptly turns anround and travels back to Earth at the same speed. How old will his twin brother be, whom he left on earth? How old will he be?
Relevant Equations
Unclear
So at first I thought that the time would be 10 years, and that I’d have to consider the outbound motion as v = .87c and inbound motion as v = -.87c but I’m struggling with addition of the velocities and whether or not this is even the right approach?
 
Physics news on Phys.org
Why not choose a suitable reference frame in which to do the calculations? That would be a good start.
 
jselms99 said:
I’m struggling with addition of the velocities
If all of the velocities are measured from the same frame of reference, the velocity addition formula does not enter in. Velocity addition gets used when you need to add a velocity measured in one frame to a velocity that has been measured from another.

If a guy on a moving rocket fires a bullet from a rifle, you need the velocity addition formula to find the resulting velocity of the bullet.

If you just want to talk about a guy riding a rocket, you do not need the velocity addition formula.
 
  • Like
Likes malawi_glenn
jselms99 said:
After traveling away from earth for 5 Earth-years
I presume this to mean 'for 5 years as measured in Earth's inertial frame'. If it doesn't mean that, then a more precise statement of the problem is needed.

I mean, by 'Earth years', I don't think they mean 'as opposed to Mars years', which are larger units of time, but that would be the literal interpretation of the quoted bit above.
 
  • Like
  • Sad
Likes PeroK and jbriggs444
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top