Two line charges lie in the XY plane

AI Thread Summary
The discussion focuses on calculating the electric field generated by two parallel line charges in the XY plane, with both lines having a linear charge density of 1 nC/m. Participants are tasked with sketching the charge distribution and setting up integrals to find the electric field along the z-axis. A key point raised is the need to prove that the electric field components in the x and y directions are zero due to symmetry. There is confusion regarding the integration technique and how to apply it to two line charges rather than one. The conversation emphasizes the importance of summing the electric fields from each line charge to determine the total field.
weresquid
Messages
2
Reaction score
0

Homework Statement


Line A extends from (2,2, 0) to (-2, 2, 0) and line B extends from (2, -2, 0) to (-2, -2, 0). Each has a linear charge density ρl = 1 nC / m. You want to calculate the magnitude and direction of the electric field due to the two line charges for all points on the z-axis.

a.) Sketch the charge distribution, and set up the integrals you need in order to
solve this problem. Indicate the vector R for each line charge on your plot,
and determine expressions for R and R3

b.) Prove that the magnitude of the electric field in the x and y directions is
zero.

Homework Equations


See pdf attachment.

The Attempt at a Solution


So far I've tried doing the integration technique shown in the attached pdf (this was a class example) and I am not quite sure if that's correct since there are no Z components. Also this problem is with two line charges and not one... so I guess I am basically having trouble finding out where to start? Any help is appreciated.
 

Attachments

Physics news on Phys.org
What do you see as the differences between the class example and the present problem? What can you do to relate the one to the other?
 
I'm guessing that I could do that formula for each line and then just sum up their total e-fields?
 
weresquid said:
I'm guessing that I could do that formula for each line and then just sum up their total e-fields?
Yes. And the other difference is? (You mentioned a concern regarding z components.)
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top