Two loudspeakers emit waves, find wavelength

AI Thread Summary
The discussion revolves around calculating the wavelength of sound waves emitted by two loudspeakers based on the positions of maximum sound intensity. The original poster solved the problem using a mathematical approach involving phase differences and manipulated equations to find a wavelength of 0.4 m. Another participant suggested a simpler method, measuring the distance between the two maximum intensities directly, which also leads to the conclusion that the difference in positions corresponds to one wavelength. Both methods are validated, confirming that the reasoning is sound and the wavelength can be derived from the distance between the crests of the sound waves. The discussion highlights the validity of multiple approaches to solving the problem.
Moolisa
Messages
20
Reaction score
5
I solved it, but then saw another solution online and am wondering if is is correct (since it is much faster than mine) and if my reasoning of it is correct

1. Homework Statement

Two loudspeakers emit sound waves along the x-axis. A listener in front of both speakers hears a maximum sound intensity when speaker 2 (s2) at origin and speaker 1 (S1) at x = 0.50 m. If s1 slowly moved forward, the sound intensity decreases, then increases, reaching another maximum when s1 is at x = 0.90 m.
a. What is wavelength

Homework Equations


Δ∅=2π (Δx/λ) +Δ∅0 =(m) 2π

The Attempt at a Solution


My Solution[/B]
I used Δ∅=2π (Δx/λ) +Δ∅0 =(m) 2π
I let m=1 when Δx=0.5m for equation 1 and m=0 when Δx=0.9m for equation 2. I manipulated they equations so each equaled Δ∅0 and then set equations 1 and 2 equal to each other. Then I solved for λ=0.4m

Person Online
They just measured the two distances between maximum sound intensities in order to get wavelength. Now this makes sense to me (I think...) since it is essentially just measuring the distance between two crests. Is this reasoning wrong?More detailed version of my attempt
1st situation, m=1, Δxa=0.5m
Δ∅=2π (Δxa/λ) +Δ∅0 =2π (1)
I manipulated the equation so
Δ∅0=2π (1-(Δxa/λ)) Equation 1

2nd Situation, m=0, Δxb=0.9m
Δ∅=2π (Δxb/λ) +Δ∅0=2π (0)
Δ∅0= -2π (Δxb/λ) Equation 2

Then I set 1 and 2 equal to another and got wavelength

 
Physics news on Phys.org
Your approach is correct. Look what happens when you manipulate those equations.
$$2\pi[1 - (\Delta x_a/\lambda) ]= -2\pi(\Delta x_b/\lambda)$$
$$1 - (\Delta x_a/\lambda) = -\Delta x_b/\lambda$$
$$1 = \frac {\Delta x_a - \Delta x_b} {\lambda}$$
$$\lambda = \Delta x_a - \Delta x_b$$

The difference between the two positions is one wavelength. Just as the other solution said.
 
  • Like
Likes Moolisa
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanged mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top