MHB Two methods for deriving the quadratic formula that I was not taught in school

Click For Summary
SUMMARY

This discussion presents two alternative methods for deriving the quadratic formula, which is typically taught through factoring, completing the square, and direct application of the formula. Method 1 involves manipulating the standard form of the quadratic equation by shifting the roots and rewriting the equation in a squared form. Method 2 simplifies the equation by multiplying through by 4a and completing the square, ultimately leading to the same quadratic formula. Both methods reinforce the derivation of the formula: x = (-b ± √(b² - 4ac)) / (2a).

PREREQUISITES
  • Understanding of quadratic equations in standard form (ax² + bx + c = 0)
  • Knowledge of completing the square technique
  • Familiarity with the square root property
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study the method of completing the square in greater detail
  • Explore the derivation of the quadratic formula using different algebraic techniques
  • Learn about the implications of the discriminant (b² - 4ac) in determining the nature of roots
  • Investigate the historical context and applications of the quadratic formula in various fields
USEFUL FOR

Students, educators, and anyone interested in advanced algebra techniques, particularly those looking to deepen their understanding of quadratic equations and their solutions.

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
As a student, I was taught 3 ways to solve quadratic equations:

i) Factoring

ii) Completing the square

iii) Applying the quadratic formula, derived by completing the square on the general quadratic in standard form:

(1) $\displaystyle ax^2+bx+c=0$

To complete the square, I was taught to move the constant term to the other side and divide through by a:

$\displaystyle x^2+\frac{b}{a}x=-\frac{c}{a}$

Then, add the square of one-half the coefficient of the linear term to both sides:

$\displaystyle x^2+\frac{b}{a}x+\left(\frac{b}{2a} \right)^2=-\frac{c}{a}+\left(\frac{b}{2a} \right)^2$

Write the left side as a square, and combine terms on the right:

$\displaystyle \left(x+\frac{b}{2a} \right)^2=\frac{b^2-4ac}{(2a)^2}$

Apply the square root property:

$\displaystyle x+\frac{b}{2a}=\pm\frac{\sqrt{b^2-4ac}}{2a}$

Solve for x:

$\displaystyle x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$

And we have the famous quadratic formula.

In my years on math forums, I have gleaned two variations on this technique that I would like to share:

Method 1:

Divide (1) by a:

$\displaystyle x^2+\frac{b}{a}x+\frac{c}{a}=0$

Now, we next want to shift the roots to the right by 1/2 the value of the coefficient of the linear term, so our new equation is:

$\displaystyle \left(x-\frac{b}{2a} \right)^2+\frac{b}{a}\left(x-\frac{b}{2a} \right)+\frac{c}{a}=0$

$\displaystyle x^2-\frac{b}{a}x+\frac{b^2}{4a^2}+\frac{b}{a}x-\frac{b^2}{2a^2}+\frac{c}{a}=0$

$\displaystyle x^2=\frac{b^2-4ac}{4a^2}$

$\displaystyle x=\pm\frac{\sqrt{b^2-4ac}}{2a}$

Now, we subtract $\displaystyle \frac{b}{2a}$ from these roots, to get the roots of the original equation:

$\displaystyle x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$

Method 2:

Arrange (1) as:

$\displaystyle ax^2+bx=-c$

Multiply by $\displaystyle 4a$:

$\displaystyle 4a^2x^2+4abx=-4ac$

Add $\displaystyle b^2$ to both sides:

$\displaystyle 4a^2x^2+4abx+b^2=b^2-4ac$

Write the left side as a square:

$\displaystyle (2ax+b)^2=b^2-4ac$

Apply the square root property:

$\displaystyle 2ax+b=\pm\sqrt{b^2-4ac}$

Solve for x:

$\displaystyle x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$

Comments and questions should be posted here:

http://www.mathhelpboards.com/f49/commentary-two-methods-deriving-quadratic-formula-i-not-taught-school-4225/#post11756
 
Last edited:
Mathematics news on Phys.org
Here is another method submitted to me by our own agentmulder:

Let

$$ax^2+bx+c=0$$

$$ax^2+bx=-c $$

Now... I want to complete the square but the coefficient of x^2 is bothering me. NO PROBLEM, I'll take it's square root.

$$\left(\sqrt{a}x+? \right)^2 $$

Now... what is the question mark? A little playing around shows it must be $$\frac{b}{2 \sqrt{a}}$$ because that's the only way to get $bx$ when we square the binomial, and I'll just subtract (it's square), the constant as a correction term.

$$\left(\sqrt{a}x+\frac{b}{2\sqrt{a}} \right)^2-\frac{b^2}{4a}=-c$$

$$\left(\sqrt{a}x + \frac{b}{2 \sqrt{a}} \right)^2=\frac{b^2-4ac}{4a}$$

$$\sqrt{a}x+\frac{b}{2\sqrt{a}}=\pm\frac{\sqrt{b^2-4ac}}{2\sqrt{a}}$$

$$\sqrt{a}x=\frac{-b\pm\sqrt{b^2-4ac}}{2\sqrt{a}}$$

DIVIDE BY $\sqrt{a}$ AND YOU'RE DONE!

$$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$
 

Similar threads

  • · Replies 19 ·
Replies
19
Views
3K
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
Replies
6
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K