Two tangent points of two lines from (0,0) to an ellipse

hill0093
Messages
2
Reaction score
0
How do I find the two tangent points of two lines from (0,0) to an ellipse?

We have 2 equations, a general ellipse and it differentiated:
1: A*x*x+B*x*y+C*y*y+D*x+E*y+F=0 is an ellipse if B*B-4*A*C<0.
Differentiating, 2: 2*A*x+B*x*dy/dx+B*y+2*C*y*dy/dx+D+E*dy/dx=0.

If F<0, ellipse not on (0,0), line from (0,0) tangent to ellipse is:
3: y=dy/dx*x where dy/dx is that of the ellipse. So 3:dy/dx=y/x.

Rearranging equation 2:
2: dy/dx=-(2*A*x+B*y+D)/(2*C*y+B*x+E).

Combining equation 2 with equation 3:
4: 2*(A*x*x+B*x*y+C*y*y)+D*x+E*y=0.

But we haven't satisfied the ellipse equation 1 yet so
Solving equations 1 and 4 together,
(D*x+E*y)/2+F=0, but that's not a tangent-point solution.

How do I get the two solutions of equations 1 and 4?
Did I make a mistake, or am I doing it wrong?
 
Physics news on Phys.org
There is nothing wrong and you have done extremely well! Now, solve that equation for, say, y and put it into your original equation for the ellipse. That will give you a quadratic equation for x, giving the x coordinate of the two points of tangency.
 
Solving equations 1 and 4 together,
5: (D*x+E*y)/2+F=0, a line not a tangent-point solution.
Rearranging by writing y as a function of x,
5: y=-(x*D/E+2*F/E) and y*y=((D*D/(E*E))*x*x+2*D*F/(E*E)*x+4*F*F/(E*E)

Substituting into the ellipse equation 1,
6: A*x*x-B*x*(x*D/E+2*F/E)+C*(((D*D/(E*E))*x*x+2*D*F/(E*E)*x+4*F*F/(E*E))+D*x-E*(x*D/E+2*F/E)+F=0
Collecting terms for a quadratic to solve using x=(-b+-sqrt(b*b-4*a*c))/(2*a),
6: (A-B*D/E+C*D*D/(E*E))x*x+2*(C*D*F/(E*E)-B*F/E)*x+(4*F*F/E-F)=0

I Used the quadratic formula and got two points that I will
check when I plot and give thus verified code then.

I also need ellipse tangency points of the two tangent circles about (0,0),
but will also have to work on that later, and that is more difficult.
Anyone have the solutions.
 
Back
Top