bobred
- 170
- 0
Homework Statement
Find the uncertainty of the kinetic energy of a quantum harmonic oscillator in the ground state, using
\left\langle p^2_x \right\rangle = \displaystyle\frac{\hbar^2}{2a^2} and
\left\langle p^4_x \right\rangle = \displaystyle\frac{3\hbar^2}{4a^2}
Homework Equations
\Delta E_{kin}=\sqrt{\left\langle E^2_{kin} \right\rangle - \left\langle E_{kin} \right\rangle^2}
\left\langle E_{kin} \right\rangle = \displaystyle\frac{\left\langle p^2_x \right\rangle}{2m}
The Attempt at a Solution
With \left\langle E_{kin} \right\rangle^2 I have no problem with but am I valid in saying
\left\langle E^2_{kin} \right\rangle = \displaystyle\frac{\left\langle p^4_x \right\rangle}{4m^2}?