Understand Quantum-Confined Stark Effect in Nanoparticles

scarecrow
Messages
139
Reaction score
0
Please help me try to understand this problem. It deals with the quantum-confined Stark effect in nanoparticles.

For odd n, n = 1, 3, 5, ...
\psi_{n}(x) = \sqrt{\frac{2}{a}} \cos (\frac{n \pi x}{a})

and for even n = 2, 4, 6, ...
\psi_{n}(x) = \sqrt{\frac{2}{a}} \sin (\frac{n \pi x}{a})

and the zeroth order energy levels are

E_{n} = \frac{h^2 \pi^2 n^2}{2ma^2}

The external field pertubation, H' = -qFx , where q is the charge and F is the applied electric field strength.

Now here's my work for the first order correction to the energy levels.

For odd n:
E_{n} = < \sqrt{\frac{2}{a}} \cos (\frac{n \pi x}{a})| H' | \sqrt{\frac{2}{a}} \cos (\frac{n \pi x}{a})> = 0

For even n, I still get 0 for the first order correction. I just know that isn't right, and I think I know why:

Am I treating H' = -qFx correctly by assuming q and F are constants and x as the operator?

Thanks for the help. :shy:
 
Last edited:
Physics news on Phys.org
I'm actually not surprised you get 0 in first order. There is a mathematical reason, and a physical reason. The mathematical reason is that all the stationary solutions of the unperturbed system (which are the ones you are considering) are symmetrical, or anti-symmetrical, which means that after squaring, they are symmetrical. Now, your perturbation term is anti-symmetrical, so the overall product is anti-symmetrical, which gives you 0 after integration.

The physical (somewhat handwaving) reason is this: for stationary states, there is a symmetry around the origin. If you calculate the probability density for the particle to be somewhere, then you have just as much chance to be at -x than you have to be at +x. The "center of gravity" of the probability density of your particle, in a stationary solution, is at x=0. Now, for x=0, your perturbation is 0. So in first order, your perturbation does not alter "the center of gravity". It will be due to higher-order distributions, which will slightly deform (and not displace) the wavefunctions, that you will get effects - but that's something that is not seen in first-order perturbation.
You can get a better grasp for this as follows: imagine your perturbation was not Fx but rather F(x-x_0). Then there would be a net displacement of the center of gravity, and you would get a first-order effect, of the order of F x_0.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top