rasko
- 6
- 0
In Sakurai's book, page 22:
|\beta><\alpha| \doteq<br /> \left( \begin{array}{ccc}<br /> <a^{(1)}|\beta><a^{(1)}|\alpha>^{*} & <a^{(1)}|\beta><a^{(2)}|\alpha>^{*} & \ldots \\<br /> <a^{(2)}|\beta><a^{(1)}|\alpha>^{*} & <a^{(2)}|\beta><a^{(2)}|\alpha>^{*} & \ldots \\<br /> \vdots & \vdots & \ddots <br /> \end{array} \right)
How can people get it? Following is my idea:
|\beta><\alpha|\\= |\beta> (\sum_{a'}|a'><a'|)<\alpha|\\<br /> =\sum_{a'}(<a'|\beta>)(<\alpha|a'>) [STEP *]
then we get
\doteq(<a^{(1)}|\alpha>^{*}, <a^{(2)}|\alpha>^{*} ,\ldots)\cdot <br /> \left( \begin{array}{c}<br /> <a^{(1)}|\beta>\\<br /> <a^{(2)}|\beta>\\<br /> \vdots<br /> \end{array} \right)
Is the STEP* right? I'm not sure if i have understood the ruls of ket and bra.
|\beta><\alpha| \doteq<br /> \left( \begin{array}{ccc}<br /> <a^{(1)}|\beta><a^{(1)}|\alpha>^{*} & <a^{(1)}|\beta><a^{(2)}|\alpha>^{*} & \ldots \\<br /> <a^{(2)}|\beta><a^{(1)}|\alpha>^{*} & <a^{(2)}|\beta><a^{(2)}|\alpha>^{*} & \ldots \\<br /> \vdots & \vdots & \ddots <br /> \end{array} \right)
How can people get it? Following is my idea:
|\beta><\alpha|\\= |\beta> (\sum_{a'}|a'><a'|)<\alpha|\\<br /> =\sum_{a'}(<a'|\beta>)(<\alpha|a'>) [STEP *]
then we get
\doteq(<a^{(1)}|\alpha>^{*}, <a^{(2)}|\alpha>^{*} ,\ldots)\cdot <br /> \left( \begin{array}{c}<br /> <a^{(1)}|\beta>\\<br /> <a^{(2)}|\beta>\\<br /> \vdots<br /> \end{array} \right)
Is the STEP* right? I'm not sure if i have understood the ruls of ket and bra.