Understanding Eigenfunctions and Eigenvalues in Quantum Mechanics

samdiah
Messages
80
Reaction score
0
I am a seond year Quantum Chemistry student. I am having a hard time understanding these concepts. I was wondering I can get help in this concept.

How can it be demonstrate mathematically in the Hamiltonian operator that the function
φ(x) = A sin(2x) + B cos(2x)

is an eigenfunction of the Hamiltonian operator:
H=-h^2 d^2
2m dx^2

What is the eigenvalue equal to?
 
Physics news on Phys.org
samdiah said:
I am a seond year Quantum Chemistry student. I am having a hard time understanding these concepts. I was wondering I can get help in this concept.

How can it be demonstrate mathematically in the Hamiltonian operator that the function
φ(x) = A sin(2x) + B cos(2x)

is an eigenfunction of the Hamiltonian operator:
H=-h^2 d^2
2m dx^2

What is the eigenvalue equal to?

Yikes. That is very difficult to read. You should try and learn some TeX. It is good for the soul, and for the typesetting. for example:

<br /> H=-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}\;.<br />

I believe that If you click on the above equation it will show you the TeX source that I used to write the equation in such a pretty manner.

Anyways. In order to do what you want you need to take the derivative of
<br /> A\sin(2 x)+B\cos(2 x)<br />
twice.

what do you get?

Then multiply by
<br /> -\frac{\hbar^2}{2m}\;.<br />

That is what the symbols on the right hand side of the equation for H are instructing you to do.

What is the end result?

Is it proportional to
<br /> A\sin(2 x)+B\cos(2 x)<br />
?

What is the proportionality constant?
 
In case you are not aware of eigenfunctions:
http://mathworld.wolfram.com/Eigenvalue.html"
 
Last edited by a moderator:
I found the two derivatives and I found that the function φ(x) = A sin(2x) + B cos(2x)
is an eigenfunction of the Hamiltonian operator:

H=-h2 d2
2m dx2

and the proportionality constant is
2h2
m

Can someone confirm with me if this is right or what did I do wrong?

Thanks so much for all the help.
 
Yes, you have the correct eigenvalue (proportionality constant).
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top