praharmitra
- 308
- 1
Can someone explain to me how the authors got the second equation of eq (4.19), Page 84, of Peskin Schroeder.
The equation is:
<br /> H_I(t) = e^{iH_0(t-t_0)}(H_{\text{int}}) e^{-iH_0(t-t_0)} = \int d^3x \frac{\lambda}{4!} \phi_I(t,\textbf{x})^4<br />
where
<br /> H_{\text{int}} = \int d^3x \frac{\lambda}{4!} \phi^4(\textbf{x})<br />
I do not understand how the second part of this eq is equal to the third. Please explain.
The equation is:
<br /> H_I(t) = e^{iH_0(t-t_0)}(H_{\text{int}}) e^{-iH_0(t-t_0)} = \int d^3x \frac{\lambda}{4!} \phi_I(t,\textbf{x})^4<br />
where
<br /> H_{\text{int}} = \int d^3x \frac{\lambda}{4!} \phi^4(\textbf{x})<br />
I do not understand how the second part of this eq is equal to the third. Please explain.