Understanding Heat Flow Between Concentric Cylinders

bemigh
Messages
29
Reaction score
0
Hey everyone...
I think I am not picking up on something here...
The rate of heat flow across a slab is:
P = (k*A*T)/D
where k is the thermal conductivity of the medium,
A is the cross sectional medium
and T is the temperature difference
and P is power...

Now.. .for my lab, I am using to concentric cylinders...

and I have to derive this expression for the heat flow between two concentric cylinders:
P = [(2*pi)*L*k*T] / ln(b/a)
where L is the length of the cylinders, and b is the radius of the outer cyliner, and a is the radius of the inner cylinder...

Now the lab is saying that the mathematics is essentially the same as for the electric field between two cylinders, and the heat flow is analogous to the electric flux... but i can't see how that helps me...

My thinking is this... the area A becomes the area of a cylinder, 2*pi*r*L, and D becomes r... but how can I possibly integrate from b to a, because now my r's will cancel?? any help is appreciated...
Cheers
 
Physics news on Phys.org
I'm assuming you have a constant J.
J = -\kappa A \nabla T
J = -\kappa (2 \pi r L) \frac{\partial T}{\partial r}
\frac{dr}{r} = -\kappa (2 \pi L) dT / J
\ln(b/A) = -\kappa (2 \pi L) \Delta T / J
J = -\kappa (2 \pi L) \Delta T / \ln(b/A)
 
thanks a lot for your help,
PS, how do i type that script you use for your reply?
 
Last edited:
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top