Understanding L2-Norm & Equation: Error Analysis Help

mcooper
Messages
28
Reaction score
0
Could someone please explain to me in fairly basic terms what the L2-norm is and what it does please. More specifically let me know what the following equation does, if possible...

E(N) = 2*pi \int (U(N) - Uexact)2 r dr

Where E is the error for a specific N. Ultimately I have values for an approximation and exact values and want to do some sort of error analysis.

I haven't found any good resources for learning about this on the internet. Also if someone could recommend a good book that would be great.

Thanks in advance!
 
Physics news on Phys.org
What is the difference between this equation and the sum of the errors squared?
 
mcooper said:
Could someone please explain to me in fairly basic terms what the L2-norm is and what it does please

The L2 norm is the length of a vector. Think Pythagorean theorem.

http://mathworld.wolfram.com/L2-Norm.html
 
hotvette said:
The L2 norm is the length of a vector. Think Pythagorean theorem.

Hi, thanks for your reply. I am in need of something that will give me a "global" error of an solution that I have. I have a plot of the approximation against the exact value and I am guessing I need to calculate the area between the 2 curves (hence the equation in the 1st post?). Can the L2 norm be applied here?

Your responses are much appreciated.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...

Similar threads

Replies
5
Views
1K
Replies
1
Views
2K
Replies
3
Views
1K
Replies
4
Views
2K
Replies
15
Views
4K
Replies
2
Views
22K
Replies
10
Views
2K
Back
Top