Understanding Matrix Transformation: T2(v)=0 Clarification

Nope
Messages
100
Reaction score
0

Homework Statement


just wondering, what exactly is T2(v)=0?
is it T(T(v))=0 or T(v)*T(v)=0??


Homework Equations





The Attempt at a Solution

 
Physics news on Phys.org
Nope said:

Homework Statement


just wondering, what exactly is T2(v)=0?
is it T(T(v))=0 or T(v)*T(v)=0??


Homework Equations





The Attempt at a Solution


It's T(T(v)) = 0
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top