Moe_slow said:
i now understand...what is the empirical formula?
this question is asking me for the emp formula of 48.1% of Ni 16.8% of P and 35% of O...
so for this do i take 48.1% turn it into 48.1g and divide it by its molar mass?...i am a bit confused
Right, you convert to a mole ratio as:
For nickel,
\left( {48.1{\text{g}}\;{\text{Ni}}} \right)\left( {\frac{{1\,{\text{mol}}\;{\text{Ni}}}}{{58.7{\text{g}}\;{\text{Ni}}}}} \right) = 0.819\,{\text{mol}}
For phosphorus,
\left( {16.8{\text{g}}\;{\text{P}}} \right)\left( \frac{{1\,{\text{mol}}\;{\text{P}}}}{{31.0{\text{g}}\;{\text{P}}}}} \right) = 0.542\,{\text{mol}}
Finally, for oxygen
\left( {35{\text{g}}\;{\text{O}}} \right)\left( {\frac{{1\,{\text{mol}}\;{\text{O}}}}{{16.0{\text{g}}\;{\text{O}}}}} \right) = 2.2\,{\text{mol}}
Next, your textbook might ask that you "divide by the smallest molar quantity," which in this case, will be our 0.542mol P.
As such, the ratio {0.819mol Ni, 0.542mol P, 2.2mol O} 'reduces' to {1.51mol Ni, 1mol P, 4.06mol O}. Multiplying each quantity by
2 yields {3.02mol Ni, 2mol P, 8.12mol O}, which we can round to {3mol Ni, 2mol P, 8mol O}.
*And thus, the empirical formula of your substance is
{\text{Ni}}_3 {\text{P}}_2 {\text{O}}_8
-Which is
sensibly:
{\text{Ni}}_{\text{3}} \left( {{\text{PO}}_{\text{4}} } \right)_2
---------------------------------------------------------
Moe_slow said:
this one question has got me lost...can someone help me solve it?
***the hydrate of barium hydroxide is 45.6% water. Determine the molecular formula of hydrate***
As 100% - 45.6% = 55.4%, you can solve as
\left( {\frac{{{\text{1}}\,{\text{mol}}\;{\text{H}}_2 {\text{O}}}}<br />
{{18.0{\text{g}}\;{\text{H}}_2 {\text{O}}}}} \right)\left( {\frac{{0.456\,{\text{g}}\;{\text{H}}_{\text{2}} {\text{O}}}}{{1.000{\text{g Ba}}\left( {{\text{OH}}} \right)_2 \cdot n{\text{H}}_2 {\text{O}}}}} \right)\left( {\frac{{1.000{\text{g Ba}}\left( {{\text{OH}}} \right)_2 \cdot n{\text{H}}_2 {\text{O}}}}{{0.554{\text{g}}\;{\text{Ba}}\left( {{\text{OH}}}\right)_2 }}} \right)\left( {\frac{{{\text{171g}}\;{\text{Ba}}\left( {{\text{OH}}} \right)_2 }}<br />
{{{\text{1}}\,{\text{mol}}\;{\text{Ba}}\left( {{\text{OH}}} \right)_2 \cdot n{\text{H}}_2 {\text{O}}}}} \right) = \frac{{7.82\,{\text{mol}}\;{\text{H}}_{\text{2}} {\text{O}}}}{{1\,{\text{mole}}\;{\text{Ba}}\left( {{\text{OH}}} \right)_2 \cdot n{\text{H}}_2 {\text{O}}\;}}
\approx \frac{{8\,{\text{mol}}\;{\text{H}}_{\text{2}} {\text{O}}}}<br />
{{1\,{\text{mole}}\;{\text{Ba}}\left( {{\text{OH}}} \right)_2 \cdot n{\text{H}}_2 {\text{O}}}}
And so, the molecular formula of your hydrate is:
{\text{Ba}}\left( {{\text{OH}}} \right)_2 \cdot 8{\text{H}}_2 {\text{O}}
