Talking about isomorphisms is perhaps a bit advanced for this Introductory Physics question.
The answer lies in the right hand rule. Set up a right handed coordinate system, with positive rotations indicated by the right hand rule. Now describe what happens with rotations about the various axes.
I'll start with rotation about the +z axis because that's equivalent to the canonical 2D rotation in the x-y plane. Here's a rotation about the z axis looks:
Notice that a positive rotation about the +z axis rotates the +x axis toward the +y axis and rotates the +y axis toward the -x axis:
\begin{aligned}<br />
\hat x' &= \phantom{-}\cos \theta\,\hat x + \sin \theta\,\hat y \\<br />
\hat y' &= -\sin\theta\,\hat x + \cos\theta\, \hat y \\<br />
\hat z' &= \phantom{-\sin\theta\,\hat x + \cos\theta\,\hat y} + \hat z<br />
\end{aligned}
Writing the above in matrix form,
<br />
\begin{pmatrix} \hat x' \\ \hat y' \\ \hat z' \end{pmatrix} =<br />
\begin{pmatrix}<br />
\phantom{-}\cos \theta & \sin \theta & 0 \\<br />
-\sin \theta & \cos \theta & 0 \\<br />
0 & 0 & 1<br />
\end{pmatrix} \,\,<br />
\begin{pmatrix} \hat x \\ \hat y \\ \hat z \end{pmatrix}<br />
That matrix on the right? That's your matrix C.Next let's look at a rotation about the +x axis:
Here a positive rotation about the +x axis rotates the +y axis toward the +z axis and rotates the +z axis toward the -y axis:
\begin{aligned}<br />
\hat y' &= \phantom{-}\cos \theta\,\hat y + \sin \theta\,\hat z \\<br />
\hat z' &= -\sin\theta\,\hat y + \cos\theta\, \hat z \\<br />
\hat x' &= \phantom{-\sin\theta\,\hat y + \cos\theta\,\hat z} + \hat x<br />
\end{aligned}
Writing the above in matrix form,
<br />
\begin{pmatrix} \hat x' \\ \hat y' \\ \hat z' \end{pmatrix} =<br />
\begin{pmatrix}<br />
1 & 0 & 0 \\<br />
0 & \phantom{-}\cos \theta & \sin \theta \\<br />
0 & -\sin \theta & \cos \theta<br />
\end{pmatrix} \,\,<br />
\begin{pmatrix} \hat x \\ \hat y \\ \hat z \end{pmatrix}<br />
That matrix on the right? That's your matrix A.Finally, let's look at a rotation about the +y axis:
Here a positive rotation about the +y axis rotates the +z axis toward the +x axis and rotates the +x axis toward the -z axis:
\begin{aligned}<br />
\hat z' &= \phantom{-}\cos \theta\,\hat z + \sin \theta\,\hat x \\<br />
\hat x' &= -\sin\theta\,\hat z + \cos\theta\, \hat x \\<br />
\hat y' &= \phantom{-\sin\theta\,\hat z + \cos\theta\,\hat x} + \hat y<br />
\end{aligned}
Writing the above in matrix form,
<br />
\begin{pmatrix} \hat x' \\ \hat y' \\ \hat z' \end{pmatrix} =<br />
\begin{pmatrix}<br />
\cos\theta & 0 & -\sin\theta \\<br />
0 & 1 & 0 \\<br />
\sin\theta & 0 & \cos \theta<br />
\end{pmatrix} \,\,<br />
\begin{pmatrix} \hat x \\ \hat y \\ \hat z \end{pmatrix}<br />
That matrix on the right? That's your matrix B.
I took the above images from slide 63 of a set of tutorial slides presented at Siggraph 98:
http://www.sdsc.edu/~moreland/courses/Siggraph98/vrml97/slides/mt0000.htm