Understanding the Complex Solutions of sqrt(i) and log(sqrt(i))

  • Thread starter Thread starter Bachelier
  • Start date Start date
  • Tags Tags
    Set
Bachelier
Messages
375
Reaction score
0
Why is it that set of all values of ##log(√i)## is ##(\frac{1}{4} + n)\pi i## and not ##(\frac{1}{4} + 2n)\pi i## since ##√i = e^\frac{ \pi i}{4}##

and ##log(z) = ln|z|+ i(Arg(z) + 2 n \pi)##
 
Physics news on Phys.org
Looking at it, I get:
<br /> \log \left[\sqrt{i}\right] = \log\left\{\exp\left[\frac{i}{2}\left(\frac{\pi}{2}+2\pi n\right)\right]\right\} = \frac{i}{2}\left(\frac{\pi}{2} + 2\pi n\right)\log e = i\left(\frac{\pi}{4} + \pi n\right)<br />
where n is an integer. It looks like you might have used a period of \pi rather than 2\pi.
 
Bachelier said:
Why is it that set of all values of ##log(√i)## is ##(\frac{1}{4} + n)\pi i## and not ##(\frac{1}{4} + 2n)\pi i## since ##√i = e^\frac{ \pi i}{4}##

and ##log(z) = ln|z|+ i(Arg(z) + 2 n \pi)##
If we exponentiate ##(\frac{1}{4} + n)\pi i## and then square it, we get
$$\left(\exp\left(\left(\frac{1}{4} + n\right)\pi i\right)\right)^2 =
\left(\exp\left(\frac{i\pi}{4}\right)\exp\left(in \pi \right)\right)^2 =
\exp\left(\frac{i\pi}{2}\right)\exp\left(i2n \pi\right) = i$$
so every number of the form ##(\frac{1}{4} + n)\pi i## is a solution. Your proposed answer misses all of the solutions for which ##n## is odd.
 
jbunniii said:
If we exponentiate ##(\frac{1}{4} + n)\pi i## and then square it, we get
$$\left(\exp\left(\left(\frac{1}{4} + n\right)\pi i\right)\right)^2 =
\left(\exp\left(\frac{i\pi}{4}\right)\exp\left(in \pi \right)\right)^2 =
\exp\left(\frac{i\pi}{2}\right)\exp\left(i2n \pi\right) = i$$
so every number of the form ##(\frac{1}{4} + n)\pi i## is a solution. Your proposed answer misses all of the solutions for which ##n## is odd.
True, but if √ is taken to denote the principal square root (which would be standard, yes?) then only the 2n solutions arise.
 
haruspex said:
True, but if √ is taken to denote the principal square root (which would be standard, yes?) then only the 2n solutions arise.
Yes, if the principal square root is intended. The "set of all values of sqrt(i)" in the subject led me to presume otherwise, but that may not have been warranted. Bachelier, what do you intend √ to mean in this context?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top