Understanding the Derivative of e^(x^x)

  • Thread starter Thread starter royisher
  • Start date Start date
  • Tags Tags
    Derivative
royisher
Messages
2
Reaction score
0

Homework Statement



Problem: e(x^x)

The Attempt at a Solution



I came up with - f'(x) = e(x^x)[ln(x)+1]. The solution should be - x^x*e(x^x)[ln(x)+1] . Can someone please help me understand why should I add x^x to the solution.

Much appreciated!
 
Physics news on Phys.org
You should use chain rule and logarithmic differentiation. First use the chain rule.
 
Aha, so I should just apply it like that -

f(x) = e(x^x) -> f'(x) = e(x^x)

g(x) = x^x -> ln(g(x))=x*ln(x) -> g'(x)=x^x(ln(x)+1)

(f°g)'(x) = e(x^x)*x^x(ln(x)+1)

Thank you very much!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top