Understanding the Limit as n Approaches Infinity in Calculus

  • Thread starter Thread starter Nerpilis
  • Start date Start date
  • Tags Tags
    Limit
Nerpilis
Messages
19
Reaction score
0
ok I have this limit question that was done in class but i didn't catch it at the time but they grazed over a step where I'm not sure what the reasoning was.
\lim_{n \rightarrow \infty} \left( 1 + \frac{1}{n + 1} \right)^{n} = \lim_{n \rightarrow \infty} \left( 1 + \frac{ \frac{1}{n} }{ 1 + \frac{1}{n} } \right)^{n} = e
I see the multiplication of one in the form of 1/n over 1/n and i know that \lim_{n \rightarrow \infty} \left( 1 + \frac{1}{n} \right)^{n} = e and i can see the similarity and possible substituions...but what happens to the 'n' exponet since it doesn't substitute nicely?
 
Last edited:
Physics news on Phys.org
I see no reason to divide the numerator and the denominator by n. You can simply use a substitution like m=n+1. Or write:
\lim_{n \rightarrow \infty} \left( 1 + \frac{1}{n + 1} \right)^{n} = \lim_{n \rightarrow \infty} \left( 1 + \frac{1}{n + 1} \right)^{n+1}\cdot \frac{1}{1+\frac{1}{n+1}}
 
I think I'm a little more confused now...I do agree that i don't see what dividing by n did to help.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top