Understanding the Metric Tensor: A 4-Vector Perspective

Maybe_Memorie
Messages
346
Reaction score
0
Some subtleties of the metric tensor are just becoming clear to me now. If I take ##g_{\mu\nu}=diag(+1,-1,-1,-1)##
and want to write ##\partial_\mu\phi^\mu##, it would be ##\partial_0\phi^0 -\partial_i\phi^i##, correct? ##\phi## is a 4-vector.
 
Physics news on Phys.org
Not really. The minus only comes in once you you use the metric somewhere, but with ##\partial_{\mu}\phi^{\mu}## if you use the contravariant components of phi, then there's no use of the metric tensor.
 
Ah I see. So in that case, ##\partial_0\phi^0 + \partial_i\phi^i=\partial_\mu\phi^{\mu}=g^{\mu\nu}\partial_\mu\phi_\nu=\partial_0\phi_0 - \partial_i\phi_i## ?
 
Expanding on what dextercioby wrote, and using the metric given in the original post:
$$
\begin{align}
\partial_\mu \phi^\mu &= \partial_0 \phi^0 + \partial_i \phi^i \\
&= g_{\mu \nu} \partial^\nu \phi^\mu \\
&= g_{0 0} \partial^0 \phi^0 + g_{1 1} \partial^1 \phi^1 + g_{2 2} \partial^2 \phi^2 + g_{3 3} \partial^3 \phi^3 \\
&= \partial^0 \phi^0 - \partial^1 \phi^1 - \partial^2 \phi^2 - \partial^3 \phi^3
\end{align}
$$
 
Maybe_Memorie said:
Ah I see. So in that case, ##\partial_0\phi^0 + \partial_i\phi^i=\partial_\mu\phi^{\mu}=g^{\mu\nu}\partial_\mu\phi_\nu=\partial_0\phi_0 - \partial_i\phi_i## ?

A couple of comments:

1) Einstein summation convention often is used only for one up, one index down;

2) the components ##\left\{ g^{\mu\nu} \right\}## only equal the components ##\left\{ g_{\mu\nu} \right\}## for the metric given in the original post, not for general metrics.
 
George Jones said:
A couple of comments:

1) Einstein summation convention often is used only for one up, one index down;

2) the components ##\left\{ g^{\mu\nu} \right\}## only equal the components ##\left\{ g_{\mu\nu} \right\}## for the metric given in the original post, not for general metrics.

Ah right, so it should be explicitly written as ##g^{\mu\nu}\partial_\mu\phi_\nu=\partial_0\phi_0 - \partial_1\phi_1 -\partial_2\phi_2 -\partial_3\phi_3##

I knew about your second comment. Somehow I've survived a course on Jackson and a differential geometry course yet I'm only really thinking about this stuff now. Thanks for the help!
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Back
Top